Multi-nanozymes are widely applied in disease treatment, biosensing, and other fields. However, most current multi-nanozyme systems exhibit only moderate activity since reaction microenvironments of different nanozyme are often distinct or even incompatible. Conventional assemble strategies are inapplicable for designing multi-nanozymes consisting of incompatible nanozymes. Herein, a versatile fiber-based compartmentalization strategy is developed to construct multi-nanozyme system capable of simultaneously performing incompatible reactions. In this system, the incompatible nanozymes are spatially distributed in distinct compartmentalized fibers, where different microenvironments can be tailored by controlling the doping reagent, endowing each nanozymes with the preferential microenvironments to exhibit their highest activity. As a proof of concept, pH-incompatible peroxidase-like and catalase-like catalytic reactions are tested to verify the feasibility of this strategy. By doping with benzoic acid in the desired location, the two pH-incompatible nanozymes can work simultaneously without interference. Further, it is demonstrated that the oxygen supply and antimicrobial power of the integrated platform can be applied for accelerating diabetic wound healing. It is hoped that this work provides a way to integrate incompatible nanozyme and broadens the application potential of multi-nanozymes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206707 | DOI Listing |
J Immunol
January 2025
Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States.
Obesity is associated with comorbidities including type 2 diabetes, chronic nonhealing wounds, and psoriasis. Normally, skin homeostasis and repair is regulated through the production of cytokines and growth factors derived from skin-resident cells including epidermal γδ T cells. However, epidermal γδ T cells exhibit reduced proliferation and defective growth factor and cytokine production during obesity and type 2 diabetes.
View Article and Find Full Text PDFPLoS One
March 2025
Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound.
View Article and Find Full Text PDFJ Wound Care
June 2024
2 Catedrático de Farmacología, Departamento de Farmacología y Pediatría, Facultad de Medicina. Universidad de Málaga. Grupo A07 del Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND, España.
Arch Orthop Trauma Surg
March 2025
Houston Methodist, Houston, USA.
Introduction: Revision total hip arthroplasty (rTHA) is increasingly common, with sepsis being a serious but rare complication. Sepsis rates in rTHA vary widely, and understanding risk factors is crucial for improving outcomes. This study aims to evaluate the incidence of sepsis following rTHA and identify preoperative and intraoperative predictors.
View Article and Find Full Text PDFCells
February 2025
Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China.
Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!