All-inorganic perovskite CsPbI contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206952 | DOI Listing |
J Am Chem Soc
January 2025
Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstraße 7, 91058 Erlangen, Germany.
Emerging photovoltaics for outer space applications are one of the many examples where radiation hard molecular semiconductors are essential. However, due to a lack of general design principles, their resilience against extra-terrestrial high-energy radiation can currently not be predicted. In this work, the discovery of radiation hard materials is accelerated by combining the strengths of high-throughput, lab automation and machine learning.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Stanford University, Stanford, California 94305, USA.
Inspired by the observation of increasingly one-dimensional (1D) behavior with decreasing temperature in small-angle twisted bilayers of WTe_{2} (tWTe_{2}), we theoretically explore the exotic sliding regimes that could be realized in tWTe_{2}. At zero displacement field, while hole-doped tWTe_{2} can be thought of as an array of weakly coupled conventional two-flavor 1D electron gases (1DEGs), the electron-doped regime is equivalent to coupled four-flavor 1DEGs, due to the presence of an additional "valley" degree of freedom. In the decoupled limit, the electron-doped system can thus realize phases with a range of interesting ordering tendencies, including 4k_{F} charge-density-wave and charge-4e superconductivity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.
Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Sciences, Indian Institute of Information Technology Design and Manufacturing Kurnool, Kurnool, Andhra Pradesh, 518008, India.
The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!