MXenes, two-dimensional transition metal carbides, nitrides, and carbonitrides, are known for their exceptional electronic and mechanical properties. Yet, the experimental efforts toward the realization of MXene-based nanoelectromechanical systems (NEMS) combining electrical and mechanical functionalities of MXenes at the nanoscale remain very limited. Here, we demonstrate a high-yield fabrication of the electromechanical devices based on individual suspended monolayer MXene flakes. We employed TiCT, the most popular MXene material to date, that can be produced as high-quality micrometer-scale monolayer flakes with a high electrical conductivity of over 10 000 S cm and a high effective Young's modulus of about 330 GPa. These TiCT flakes can be transferred over prefabricated trenches in a Si/SiN substrate at a high yield, potentially enabling fabrication of hundreds of electromechanical devices based on suspended MXene monolayers. We demonstrate very clean, uniform, and well-stretched membranes with different dimensions, with TiCT flakes suspended over trenches with gaps ranging from 200 nm to 2 μm. The resulting TiCT monolayer membranes were electrostatically actuated, while their vertical displacement was monitored using a tip of an atomic force microscope (AFM). The devices reliably responded to the electrostatic actuation in ambient conditions over multiple cycles and with different measurement parameters, such as AC frequency, AC voltage amplitude, and AFM tip loading force. The demonstration of the high-yield fabrication of working electromechanical devices based on suspended TiCT MXene membranes at the ultimate monolayer limit paves the way for the future exploration of the potential of MXenes for NEMS applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2nr05493k | DOI Listing |
Nature
January 2025
Department of Materials Engineering, Indian Institute of Science, Bangalore, India.
Piezoelectric materials directly convert between electrical and mechanical energies. They are used as transducers in applications such as nano-positioning and ultrasound imaging. Improving the properties of these devices requires piezoelectric materials capable of delivering a large longitudinal strain on the application of an electric field.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Science, No. 2019 Jialuo Road, Shanghai 201800, China.
Ionic conductive hydrogels have attracted great attention due to their good flexibility and conductivity in flexible electronic devices. However, because of the icing and water loss problems, the compatibility issue between the mechanical properties and conductivity of hydrogel electrolytes over a wide temperature range remains extremely challenging to achieve. Although, antifreezing/water-retaining additives could alleviate these problems, the reduced performance and complex preparation methods seriously limit their development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong Provincial Research Center on Smart Materials and Energy Conversion Devices, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, School of Electromechanical Engineering and School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China.
Lead-based antiferroelectric (AFE) ceramics have the advantages of high power density, fast charge and discharge speed, and the electric-field-induced AFE-FE phase transition, making them one of the potential dielectric energy storage materials. However, the energy storage density still needs to be improved. In this work, (PbCa) (ZrSn)O (PCZS, = 0.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, 02-787 Warsaw, Poland.
In recent years, civil engineering has increasingly embraced communication tools for automation, with sensors playing a pivotal role, especially in structural health monitoring (SHM). These sensors enable precise data acquisition, measuring parameters like force, displacement, and temperature and transmit data for timely interventions to prevent failures. This approach reduces reliance on manual inspections, offering more accurate outcomes.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China.
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!