Three new copper(II) complexes, [Cu(1,10-Phen)(L)] (1), [Cu(2,2'-Bpy)(L)] (2) and [Cu(3,4-Lut)(L)] (3), where H L=2-[(2,4-dihydroxyphenyl)methylidene]-N-(prop-2-en-1-yl)hydrazine-1-carbothioamide, 1,10-Phen=1,10-phenanthroline, 2,2'-Bpy=2,2'-bipyridine, 3,4-Lut=3,4-lutidine, have been synthesized and characterized by elemental analysis, FTIR spectroscopy and single crystal X-ray crystallography (1, 2). All compounds are mononuclear. The introduction of a monodentate N-heteroaromatic base (3,4-dimethylpyridine) has led to a significant increase of antimicrobial activity against Gram-negative Escherichia coli and antifungal activity against Candida albicans compared to the pro-ligand and the precursor complex [Cu(L)H O]. The introduction of bidentate N-heteroaromatic bases did not lead to such increase of antimicrobial and antifungal activities. Moreover, complex 3 surpasses the inhibitory activity of tetracycline toward Enterobacter cloacae and the inhibitory activity of fluconazole toward Candida parapsilosis and Cryptococcus neoformans. The study of antioxidant activity against cation radicals ABTS⋅ showed that complexes 1-3 are more active than Trolox, but only introduction of the monodentate N-heteroaromatic base (3,4-dimethylpyridine) led to the increase of antioxidant properties compared to the precursor complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9769083 | PMC |
http://dx.doi.org/10.1002/open.202200208 | DOI Listing |
Nat Commun
November 2024
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian, China.
Constructing organic fluorophosphines, vital drug skeletons, through the direct fluorination of readily available alkyl phosphonates has been impeded due to the intrinsic low electrophilicity of P and the high bond energy of P═O bond. Here, alkyl phosphonates are electrophilically activated with triflic anhydride and N-heteroaromatic bases, enabling nucleophilic fluorination at room temperature to form fluorophosphines via reactive phosphine intermediates. This approach facilitates the late-stage (radio)fluorination of broad dialkyl and monoalkyl phosphonates.
View Article and Find Full Text PDFChemistryOpen
December 2022
Laboratory of Advanced Materials in Biofarmaceutics and Technics, Moldova State University, Chişinău, 2009, Republic of Moldova.
Three new copper(II) complexes, [Cu(1,10-Phen)(L)] (1), [Cu(2,2'-Bpy)(L)] (2) and [Cu(3,4-Lut)(L)] (3), where H L=2-[(2,4-dihydroxyphenyl)methylidene]-N-(prop-2-en-1-yl)hydrazine-1-carbothioamide, 1,10-Phen=1,10-phenanthroline, 2,2'-Bpy=2,2'-bipyridine, 3,4-Lut=3,4-lutidine, have been synthesized and characterized by elemental analysis, FTIR spectroscopy and single crystal X-ray crystallography (1, 2). All compounds are mononuclear. The introduction of a monodentate N-heteroaromatic base (3,4-dimethylpyridine) has led to a significant increase of antimicrobial activity against Gram-negative Escherichia coli and antifungal activity against Candida albicans compared to the pro-ligand and the precursor complex [Cu(L)H O].
View Article and Find Full Text PDFAcc Chem Res
December 2019
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Innovative Collaboration Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering , Xiamen University, Xiamen 361005 , P. R. China.
N-centered radicals are versatile reaction intermediates that can react with various π systems to construct C-N bonds. Current methods for generating N-centered radicals usually involve the cleavage of an N-heteroatom bond; however, similar strategies that are applicable to N-H bonds prove to be more challenging to develop and therefore are attracting increasing attention. In this Account, we summarize our recent efforts in the development of electrochemical methods for the generation and synthetic utilization of N-centered radicals.
View Article and Find Full Text PDFChem Biol Drug Des
September 2014
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11000, Belgrade, Serbia.
Novel Pd(II) complex with N-heteroaromatic Schiff base ligand, derived from 8-quinolinecarboxaldehyde (q8a) and ethyl hydrazinoacetate (haOEt), was synthesized and characterized by analytical and spectroscopy methods. The structure of novel complex, as well as structures of its quinoline and pyridine analogues, was optimized by density functional theory calculations, and theoretical data show good agreement with experimental results. A cytotoxic action of the complexes was evaluated on cultures of human promyelocytic leukemia (HL-60), human glioma (U251), rat glioma (C6), and mouse fibrosarcoma (L929) cell lines.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
March 2014
Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia.
In search for novel biologically active metal based compounds, an evaluation of in vitro cytotoxic, antioxidant, and antimicrobial activity of new Pt(II) complex and its Zn(II), Cu(II), and Co(III) analogues, with NNO tridentately coordinated N-heteroaromatic Schiff base ligand (E)-2-[N'-(1-pyridin-2-yl-ethylidene)hydrazino]acetate, was performed. Investigation of antioxidative properties showed that all of the compounds have strong radical scavenging potencies. The Zn(II) complex showed potent inhibition of DNA cleavage by hydroxyl radical.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!