Biological research is in constant need of new methodological developments to assess organization and functions at various scales ranging from whole organisms to interactions between proteins. One of the main ways to evidence and quantify biological phenomena is imaging. Fluorescence microscopy and label-free microscopy are in particular highly active fields of research due to their compatibility with living samples as well as their versatility. The Imabio Young Scientists Network (YSN) is a group of young scientists (PhD students, postdocs and engineers) who are excited about bioimaging and aim to create a proactive network of researchers with the same interest. YSN is endorsed by the bioimaging network GDR Imabio in France, where the initiative was started in 2019. Since then, we aim to organize the Imabio YSN conference every year to expand the network to other European countries, establish new collaborations and ignite new scientific ideas. From 6-8 July 2022, the YSN including researchers from the domains of life sciences, chemistry, physics and computational sciences met at the Third Imabio YSN Conference 2022 in Lyon to discuss the latest bioimaging technologies and biological discoveries. In this Meeting Review, we describe the essence of the scientific debates, highlight remarkable talks, and focus on the Career Development session, which is unique to the YSN conference, providing a career perspective to young scientists and help to answer all their questions at this career stage. This conference was a truly interdisciplinary reunion of scientists who are eager to push the frontiers of bioimaging in order to understand the complexity of biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793865PMC
http://dx.doi.org/10.1242/bio.059630DOI Listing

Publication Analysis

Top Keywords

young scientists
16
ysn conference
12
proactive network
8
imabio ysn
8
bioimaging
6
ysn
6
network
5
scientists
5
latest trends
4
trends bioimaging
4

Similar Publications

Temporal parameters are crucial for understanding running performance, especially in elite sports environments. Traditional measurement methods are often labor-intensive and not suitable for field conditions. This study seeks to provide greater clarity in parameter estimation using a single device by comparing it to the gold standard.

View Article and Find Full Text PDF

Polymerizable Cholinium-Based Antibiotics for Polymer Carriers: Systems with Combined Load of Cloxacillin and Ampicillin.

Molecules

December 2024

Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.

Single and dual-drug delivery systems (DDSs) based on linear choline polymers were designed through the controlled polymerization of a pharmaceutically functionalized monomer, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium, with counterions of cloxacillin (TMAMA/CLX), or its copolymerization with [2-(methacryloyloxy)ethyl]trimethylammonium with ampicillin (TMAMA/AMP), providing antibiotic properties.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.

View Article and Find Full Text PDF

The composition of TBFS is complex. It is categorized into low (W < 5%), medium (5% < W < 20%), and high-titanium slag (W > 20%) based on Ti content. The titanium in the slag is underutilized, causing it to accumulate and contribute to environmental pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!