Reducing interfacial thermal resistance by interlayer.

J Phys Condens Matter

Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China.

Published: December 2022

Heat dissipation is crucial important for the performance and lifetime for highly integrated electronics, Li-ion battery-based devices and so on, which lies in the decrease of interfacial thermal resistance (ITR). To achieve this goal, introducing interlayer is the most widely used strategy in industry, which has attracted tremendous attention from researchers. In this review, we focus on bonding effect and bridging effect to illustrate how introduced interlayer decreases ITR. The behind mechanisms and theoretical understanding of these two effects are clearly illustrated. Simulative and experimental studies toward utilizing these two effects to decrease ITR of real materials and practical systems are reviewed. Specifically, the mechanisms and design rules for the newly emerged graded interlayers are discussed. The optimization of interlayers by machine learning algorithms are reviewed. Based on present researches, challenges and possible future directions about this topic are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aca50aDOI Listing

Publication Analysis

Top Keywords

interfacial thermal
8
thermal resistance
8
reducing interfacial
4
resistance interlayer
4
interlayer heat
4
heat dissipation
4
dissipation crucial
4
crucial performance
4
performance lifetime
4
lifetime highly
4

Similar Publications

To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model.

View Article and Find Full Text PDF

Dynamic-Wetting Liquid Metal Thin Layer Induced via Surface Oxygen-Containing Functional Groups.

ACS Nano

January 2025

CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Enhancing the wettability of liquid metals (LMs) to address their high surface tensions is crucial for practical applications. However, controlling LMs wetting on various substrates and understanding the underlying mechanisms are challenging. Here, we present a facile dynamic-wetting strategy to modulate eutectic gallium-indium (EGaIn) wettability via chemical surface modification, spontaneously forming a stable and thin (∼18 μm) EGaIn layer.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically.

View Article and Find Full Text PDF

A polyvinylidene carbonate:BN layer was constructed between LiAlTi(PO) (LATP) and the lithium (Li) electrode, improving interfacial compatibility and thermal stability. The LiN-rich solid electrolyte interphase regulates Li deposition behaviors. The solid-state Li metal batteries (SSLMBs) show remarkable electrochemical performance, exhibiting endurance for 800 hours of cycling at 0.

View Article and Find Full Text PDF

In order to investigate the effect of conformational change in pea protein isolate (PPI) on its emulsification properties, soy hull polysaccharides (SHP) were added to modify the conformation following heat treatment at 70-100 °C to improve emulsification. The results of UV and fluorescence spectroscopy indicated that the heat treatment exposed the amino acid residues to a more hydrophobic environment. The mean volume diameter (d) of PPI was reduced from 67.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!