Analysis of polymeric nanoparticle properties for siRNA/DNA delivery in a tumor xenograft tissue slice air-liquid interface model.

Biotechnol J

Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Leipzig, Germany.

Published: April 2023

Background: Classical two-dimensional (2D) cell culture as a drug or nanoparticle test system only poorly recapitulates in vivo conditions. Animal studies are costly, ethically controversial, and preclude large-scale testing.

Methods And Results: We established a three-dimensional (3D) tissue slice air-liquid interface (ALI) culture model for nanoparticle testing. We developed an optimized procedure for the reproducible generation of large sets of tissue slices from tumor xenografts that retain their tissue architecture. When used for the analysis of nanoparticles based on chemically modified polyethylenimines (PEIs) to deliver siRNA or DNA, differences in transfection efficacy and cytotoxicity between nanoparticles were observed more clearly than in 2D cell culture. While nanoparticle efficacies between cell culture and the tissue slice model overall correlated, the tissue slice model also identified particularly suitable candidates whose efficacy was underestimated in 2D cell culture and had already been shown in previous in vivo studies.

Conclusion: The ex vivo 3D tissue slice ALI culture model is a powerful system that allows the effective evaluation of biological nanoparticle efficacy and biocompatibility in an intact tissue environment. It is comparably inexpensive, time-saving, and follows the 3R principle, while allowing the identification of critical nanoparticle properties and optimal candidates for in vivo applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.202200415DOI Listing

Publication Analysis

Top Keywords

tissue slice
20
cell culture
16
nanoparticle properties
8
tissue
8
slice air-liquid
8
air-liquid interface
8
ali culture
8
culture model
8
slice model
8
nanoparticle
6

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Neurology, Mayo Clinic, Rochester, MN, USA.

Background: Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder with limited treatment options. As it progresses, synapse degeneration is the most important feature contributing to cognitive dysfunction. Mitochondria supply synapses with ATP for neurotransmitter release and vesicle recycling and buffer calcium concentrations.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vanderbilt University Medical Center, Nashville, TN, USA.

Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.

View Article and Find Full Text PDF

Ginkgo biloba extract EGb 761® ameliorates cognitive impairment and alleviates TNFα response in 5xFAD Alzheimer's disease model mice.

Phytomedicine

December 2024

Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:

Background: Ginkgo biloba leaf extract EGb 761® has shown clinical efficacy in patients with mild cognitive impairment and dementia. However, the pharmacological action of EGb 761® in Alzheimer's disease (AD) remains unclear and molecular mechanisms targeted in the brain are not completely understood.

Hypothesis/purpose: We aimed to investigate 1) the potential sex-dependent effects of oral administration of EGb 761® in 5xFAD mice, an AD mouse model, and 2) the underlying microglial subtype responsible for the observed anti-inflammatory effects in the brain.

View Article and Find Full Text PDF

Multilabel segmentation and analysis of skeletal muscle and adipose tissue in routine abdominal CT scans.

Comput Biol Med

January 2025

Department of Simulation and Graphics, Faculty of Computer Science, University of Magdeburg, Universitätsplatz 2 39106, Magdeburg, Germany; Department of Computational Medicine, Ilmenau University of Technology, Germany.

Purpose: This paper presents a deep learning-based multi-label segmentation network that extracts a total of three separate adipose tissues and five different muscle tissues in CT slices of the third lumbar vertebra and additionally improves the segmentation of the intermuscular fat.

Method: Based on a self-created data set of 130 patients, an extended Unet structure was trained and evaluated with the help of Dice score, IoU and Pixel Accuracy. In addition, the interobserver variability for the decision between ground truth and post-processed segmentation was calculated to illustrate the relevance in everyday clinical practice.

View Article and Find Full Text PDF

Pelvic lymph node dissection (PLND) is the most accurate procedure for lymph node (LN) staging in prostate cancer (PCa) patients. LN sectioning and hematoxylin and eosin (H&E) staining of at least one slice remains the gold standard for LN evaluation, potentially leading to misdetection of small metastatic focus. Entire LN analysis is possible with One-Step Nucleic Acid Amplification (OSNA) by detecting cytokeratin 19 (CK19) mRNA as a surrogate for LN invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!