Influenza virus remains a major public health challenge due to its high morbidity and mortality and seasonal surge. Although antiviral drugs against the influenza virus are widely used as a first-line defense, the virus undergoes rapid genetic changes, resulting in the emergence of drug-resistant strains. Thus, new antiviral drugs that can outwit resistant strains are of significant importance. Herein, we used deep reinforcement learning (RL) algorithm to design new chemical entities (NCEs) that are able to bind to the native and H275Y mutant (oseltamivir-resistant) neuraminidases (NAs) of influenza A virus with better binding energy than oseltamivir. We generated more than 66211 NCEs, which were prioritized based on the filtering rules, structural alerts, and synthetic accessibility. Then, 18 NCEs with better MM/PBSA scores than oseltamivir were further analyzed in molecular dynamics (MD) simulations conducted for 100 ns. The MD experiments showed that 8 NCEs formed very stable complexes with the binding pocket of both native and H275Y mutant NAs of H1N1. Furthermore, most NCEs demonstrated much better binding affinity to group 2 (N2, N3, and N9) and influenza B virus NAs than oseltamivir. Although all 8 NCEs have non-sialic acid-like structures, they showed a similar binding mode as oseltamivir, indicating that it is possible to find new scaffolds with better binding and antiviral properties than sialic acid-like inhibitors. In conclusion, we have designed potential compounds as antiviral candidates for further synthesis and testing against wild and mutant influenza virus.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2022.2158936DOI Listing

Publication Analysis

Top Keywords

influenza virus
20
native h275y
12
h275y mutant
12
better binding
12
design chemical
8
chemical entities
8
mutant influenza
8
deep reinforcement
8
reinforcement learning
8
antiviral drugs
8

Similar Publications

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Mucin Colocalizes with Influenza Virus and Preserves Infectivity in Deposited Model Respiratory Droplets.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

The stability of influenza virus in respiratory particles varies with relative humidity (RH) and protein content. This study investigated the decay, or loss of infectivity, of influenza A virus (IAV) in 1-μL respiratory droplets deposited on a surface with varying concentrations of mucin, one of the most abundant proteins in respiratory mucus, and examined the localization of virions within droplets. IAV remained stable at 0.

View Article and Find Full Text PDF

Reaction-advection-diffusion model of highly pathogenic avian influenza with behavior of migratory wild birds.

J Math Biol

January 2025

School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, Jilin, People's Republic of China.

Wild birds are one of the main natural reservoirs for avian influenza viruses, and their migratory behavior significantly influences the transmission of avian influenza. To better describe the migratory behavior of wild birds, a system of reaction-advection-diffusion equations is developed to characterize the interactions among wild birds, poultry, and humans. By the next-generation operator, the basic reproduction number of the model is formulated.

View Article and Find Full Text PDF

Objectives: Given the ongoing challenges regarding the specific roles of viral infections in cancer etiology, or as cancer co-morbidities, this study assessed potential associations between anti-viral, T-cell receptor (TCR) complementarity domain region-3 (CDR3s), and clinical outcomes for ovarian cancer.

Methods: TCR CDR3s were isolated from ovarian cancer specimens for a determination of which patients had anti-viral CDR3s and whether those patients had better or worse outcomes.

Results: Analyses revealed that patients with exact matches of anti-Epstein-Barr virus (EBV) CDR3 amino acid sequences exhibited better outcomes for both overall and disease-specific survival.

View Article and Find Full Text PDF

Cigarette smoke components modulate the MR1-MAIT axis.

J Exp Med

February 2025

Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.

Tobacco smoking is prevalent across the world and causes numerous diseases. Cigarette smoke (CS) compromises immunity, yet little is known of the components of CS that impact T cell function. MR1 is a ubiquitous molecule that presents bacterial metabolites to MAIT cells, which are highly abundant in the lungs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!