Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In nature, the isoalloxazine heterocycle of flavin cofactors undergoes reversible covalent bond formation with a variety of different reaction partners. These intermediates play a crucial role as the signalling states and in selective catalysis reactions. In the organic laboratory, covalent adducts with a new carbon-carbon bond have been observed with photochemically excited flavins but have, so far, only been regarded as dead-end side products. We have identified a series of molecular flavins that form adducts resulting in a new C-C bond at the C4a-position through allylic C-H activation and dehydroamino acid oxidation. Typically, these reactions are of radical nature and a stepwise pathway is assumed. We could demonstrate that these adducts are no dead-end and that the labile C-C bond can be cleaved by adding the persistent radical TEMPO leading to flavin regeneration and alkoxyamine-functionalised substrates. Our method allows for the catalytic oxidation of dehydroamino acids (16 examples) and we show that the acylimine products serve as versatile starting points for diversification. The present results are envisioned to stimulate the design of further catalytic reactions involving intermediates at the flavin C4a-position and their reactivity towards metal complexes or other persistent organic radicals. Our method for dehydrobutyrine derivatisation is orthogonal to the currently used methods (, nucleophilic attack or radical addition) and offers new perspectives for peptide natural product diversification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728571 | PMC |
http://dx.doi.org/10.1039/d2sc04341f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!