A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Low genetic diversity, local-scale structure, and distinct genetic integrity of Korean chum salmon () at the species range margin suggest a priority for conservation efforts. | LitMetric

Chum salmon () is an ecologically and economically important species widely distributed across the North Pacific Ocean. However, the population size of this fishery resource has declined globally. Identifying genetic integrity, diversity and structure, and phylogenetic relationships of wild populations of over an entire species' range is central for developing its effective conservation and management plans. Nevertheless, chum salmon from the Korean Peninsula, which are comprised of its southwestern range margins, have been overlooked. By using mtDNA control region and 10 microsatellite loci, we here assessed the genetic diversity and structure for 16 populations, including 10 wild and six hatchery populations, encompassing the species entire geographic range in South Korea. The analyses showed that genetic diversity is significantly higher for wild than for hatchery populations. Both marker sets revealed significant genetic differentiation between some local populations. Comparisons of six wild and their respective hatchery populations indicated that allele/haplotype frequencies considerably differ, perhaps due to a strong founder effect and/or homogenizing of hatchery populations for stocking practice. Despite its single admixed gene pool for the Korean chum salmon, some local populations housing their own unique lineages should be accorded with a high priority to safeguard their genetic integrities. The results of our comparative analyses of the Korean population with other North Pacific chum salmons (inhabiting regions of Japan, Russia, and North America) revealed a lower diversity but higher contribution to the overall species-level genetic diversity, and also its unique genetic integrity. These findings advocate for the evolutionary significance of the Korean population for species-level conservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753833PMC
http://dx.doi.org/10.1111/eva.13506DOI Listing

Publication Analysis

Top Keywords

genetic diversity
16
chum salmon
16
hatchery populations
16
genetic integrity
12
genetic
8
korean chum
8
north pacific
8
diversity structure
8
populations
8
wild hatchery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!