A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Brain Functional Connectivity Using Mobile Sensing. | LitMetric

Brain circuit functioning and connectivity between specific regions allow us to learn, remember, recognize and think as humans. In this paper, we ask the question if mobile sensing from phones can predict brain functional connectivity. We study the brain resting-state functional connectivity (RSFC) between the ventromedial prefrontal cortex (vmPFC) and the amygdala, which has been shown by neuroscientists to be associated with mental illness such as anxiety and depression. We discuss initial results and insights from the NeuroSence study, an exploratory study of 105 first year college students using neuroimaging and mobile sensing across one semester. We observe correlations between several behavioral features from students' mobile phones and connectivity between vmPFC and amygdala, including conversation duration (r=0.365, p<0.001), sleep onset time (r=0.299, p<0.001) and the number of phone unlocks (r=0.253, p=0.029). We use a support vector classifier and 10-fold cross validation and show that we can classify whether students have higher (i.e., stronger) or lower (i.e., weaker) vmPFC-amygdala RSFC purely based on mobile sensing data with an F1 score of 0.793. To the best of our knowledge, this is the first paper to report that resting-state brain functional connectivity can be predicted using passive sensing data from mobile phones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762691PMC
http://dx.doi.org/10.1145/3381001DOI Listing

Publication Analysis

Top Keywords

functional connectivity
12
mobile sensing
12
brain functional
8
vmpfc amygdala
8
connectivity
5
predicting brain
4
mobile
4
connectivity mobile
4
sensing brain
4
brain circuit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!