Nuclear Cardiology Data Analyzed Using Machine Learning.

Ann Nucl Cardiol

Wolfram Wolfram Research Inc., Champaign, IL, USA.

Published: August 2022

Machine learning has become popular in clinical practice, and the amount of research that uses artificial intelligence is rapidly increasing. In contrast to conventional statistical and rule-based methods, machine learning creates algorithms based only on combinations of input and output databases. Basic understanding of the internal workings of artificial intelligence, its structures and need for appropriate databases, as well as its strengths and weaknesses is important for efficient machine learning application. The cardiological applications of machine learning include diagnosing coronary artery diseases and heart failure, and examples are addressed herein. A preliminary application of machine learning to a I-metaiodobenzylguanidine-based risk model appears promising, and further studies using similar approaches are anticipated. Nuclear medicine physicians and cardiologists should play key roles in developing machine learning-based methods to ensure practical and reliable decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9749760PMC
http://dx.doi.org/10.17996/anc.22-00164DOI Listing

Publication Analysis

Top Keywords

machine learning
24
artificial intelligence
8
machine
7
learning
6
nuclear cardiology
4
cardiology data
4
data analyzed
4
analyzed machine
4
learning machine
4
learning popular
4

Similar Publications

Predicting phage-host interaction via hyperbolic Poincaré graph embedding and large-scale protein language technique.

iScience

January 2025

Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China.

Bacteriophages (phages) are increasingly viewed as a promising alternative for the treatment of antibiotic-resistant bacterial infections. However, the diversity of host ranges complicates the identification of target phages. Existing computational tools often fail to accurately identify phages across different bacterial species.

View Article and Find Full Text PDF

Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.

View Article and Find Full Text PDF

Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

Front Artif Intell

January 2025

Department of Computer Science and Artificial Intelligence, College of Computing and Information Technology, University of Bisha, Bisha, Saudi Arabia.

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.

Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.

View Article and Find Full Text PDF

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!