Automatic lesion detection and segmentation in F-flutemetamol positron emission tomography images using deep learning.

Biomed Eng Online

Department of Nuclear Medicine, Cha University Bundang Medical Center, 59, Yatap-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13496, Korea.

Published: December 2022

Background: Beta amyloid in the brain, which was originally confirmed by post-mortem examinations, can now be confirmed in living patients using amyloid positron emission tomography (PET) tracers, and the accuracy of diagnosis can be improved by beta amyloid plaque confirmation in patients. Amyloid deposition in the brain is often associated with the expression of dementia. Hence, it is important to identify the anatomically and functionally meaningful areas of the human brain cortex surface using PET to diagnose the possibility of developing dementia. In this study, we demonstrated the validity of automated F-flutemetamol PET lesion detection and segmentation based on a complete 2D U-Net convolutional neural network via masking treatment strategies.

Methods: PET data were first normalized by volume and divided into five amyloid accumulation zones through axial, coronary, and thalamic slices. A single U-Net was trained using a divided dataset for one of these zones. Ground truth segmentations were obtained by manual delineation and thresholding (1.5 × background).

Results: The following intersection over union values were obtained for the various slices in the verification dataset: frontal lobe axial/sagittal: 0.733/0.804; posterior cingulate cortex and precuneus coronal/sagittal: 0.661/0.726; lateral temporal lobe axial/coronal: 0.864/0.892; parietal lobe axial/coronal: 0.542/0.759; and striatum axial/sagittal: 0.679/0.752. The U-Net convolutional neural network architecture allowed fully automated 2D division of the F-flutemetamol PET brain images of Alzheimer's patients.

Conclusions: As dementia should be tested and evaluated in various ways, there is a need for artificial intelligence programs. This study can serve as a reference for future studies using auxiliary roles and research in Alzheimer's diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768895PMC
http://dx.doi.org/10.1186/s12938-022-01058-8DOI Listing

Publication Analysis

Top Keywords

lesion detection
8
detection segmentation
8
positron emission
8
emission tomography
8
beta amyloid
8
patients amyloid
8
f-flutemetamol pet
8
u-net convolutional
8
convolutional neural
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!