Overexpression of a rice Tubby-like protein-encoding gene, OsFBT4, confers tolerance to abiotic stresses.

Protoplasma

Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.

Published: July 2023

The OsFBT4 belongs to a small sub-class of rice F-box proteins called TLPs (Tubby-like proteins) containing the conserved N-terminal F-box domain and a C-terminal Tubby domain. These proteins have largely been implicated in both abiotic and biotic stress responses, besides developmental roles in plants. Here, we investigated the role of OsFBT4 in abiotic stress signalling. The OsFBT4 transcript was strongly upregulated in response to different abiotic stresses in rice, including exogenous ABA. When ectopically expressed, in Arabidopsis, under a constitutive CaMV 35S promoter, the overexpression (OE) caused hypersensitivity to most abiotic stresses, including ABA, during seed germination and early seedling growth. At the 5-day-old seedling growth stage, the OE conferred tolerance to all abiotic stresses. The OE lines displayed significant tolerance to salinity and water deficit at the mature growth stage. The stomatal size and density were seen to be altered in the OE lines, accompanied by hypersensitivity to ABA and hydrogen peroxide (HO) and a reduced water loss rate. Overexpression of OsFBT4 caused upregulation of several ABA-regulated/independent stress-responsive genes at more advanced stages of growth, showing wide and intricate roles played by OsFBT4 in stress signalling. The OsFBT4 showed interaction with several OSKs (Oryza SKP1 proteins) and localized to the plasma membrane (PM). The protein translocates to the nucleus, in response to oxidative and osmotic stresses, but failed to show transactivation activity in the yeast system. The OE lines also displayed morphological deviations from the wild-type (WT) plants, suggesting a role of the gene also in plant development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00709-022-01831-5DOI Listing

Publication Analysis

Top Keywords

abiotic stresses
16
tolerance abiotic
8
stress signalling
8
signalling osfbt4
8
seedling growth
8
growth stage
8
lines displayed
8
osfbt4
7
abiotic
6
stresses
5

Similar Publications

Background: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Oxidative balance score (OBS) is a composite measures that assess the balance between pro-oxidant and antioxidant factors in an individual's diet and lifestyle, with higher scores indicating greater antioxidant exposure. Despite its potential significance, there is a limited body of research exploring the relationship between OBS and all-cause and cardiovascular disease (CVD) mortality specifically in younger patients with diabetes. We aimed to investigate the possible relationship between OBS and all-cause and CVD mortality in younger patients with diabetes.

View Article and Find Full Text PDF

Assessment of Opuntia ficus-indica supplementation on enhancing antioxidant levels.

Sci Rep

January 2025

School of Healthy Aging, Aesthetic and Regenerative Medicine, Faculty of Medicine and Health Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia.

Opuntia ficus-indica (OFi) is a major fruit source prevalent in semiarid and arid regions across various countries worldwide. It is widely recognised for its potential health benefits; however, most studies investigating its effects have been limited to pre-clinical models, highlighting the need for further validation through clinical trials. This study aimed to evaluate the effectiveness of OFi supplementation in enhancing antioxidant levels.

View Article and Find Full Text PDF

A bHLH transcription factor RrUNE12 regulates salt tolerance and promotes ascorbate synthesis.

Plant Cell Rep

January 2025

Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.

RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!