A new approach is introduced for rapid and reliable bacteria detection in food. Namely, static headspace-comprehensive two-dimensional gas chromatography (HS-GC × GC) with backflushing. The introduced approach provides fast detection of Escherichia coli (E. coli) in enriched ultra-high-temperature processed (UHT) dairy milk. The presence of E. coli may be indicated by detecting microbial volatile organic compounds emanating from test solutions inoculated with E. coli. In the present investigation, HS-GC × GC analysis is preceded by conventional enrichment in nutrient broth and inoculated samples are clearly discernable from controls following as little as 15 h sample enrichment. Headspace equilibration for 28 min followed by an 8 min GC × GC analysis of enriched test solutions reduces time-to-response by approximately one full day compared to conventional culture-based methods. The presence of ethanol, 1-propanol, and acetaldehyde may be used as a putative marker of E. coli contamination in milk and the introduced approach is able to detect single-cell initial bacterial load. Faster, reliable detection of pathogens and/or spoilage microbes in food products is desirable for the food industry. The described approach has great potential to complement the conventional workflow and be utilised for rapid microbial screening of foodstuff.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-022-04485-7 | DOI Listing |
BMJ Glob Health
December 2024
Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia.
Background: In developing countries, due to improper management of domestic animals' exposures, under-five (U5) children have been affected by diarrhoea. However, there is no evidence that shows the presence of diarrhoea-causing pathogens in the faeces of U5 children and animals residing in the same houses in the Sidama region, Ethiopia.
Methods: A laboratory-based matched case-control study was conducted on children aged 6-48 months in the Sidama region of Ethiopia from February to June 2023.
Acta Trop
December 2024
Key Laboratory of Diarrhea Disease Detection, Zhuhai International Travel Healthcare Center, Zhuhai 519020, Guangdong, China. Electronic address:
In the current study, the analytical sensitivity, analytical specificity, reproducibility, anti-interferences ability, and clinical performance of the QIAstat-Dx Gastrointestinal Panel (GIP) system were evaluated using pooled stool samples. Results showed that the pooled sample test detected the selected ten targets exclusively, with no cross reaction with any other targets of common enteropathogens. The analytical sensitivity of the pooled sample test on QIAstat-Dx GIP system was 10 CFU/ml for Shigella spp.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.
Continued efforts to discover new antibacterial molecules are critical to achieve a robust pre-clinical pipeline for new antibiotics. Screening of compound or natural product extract libraries remains a widespread approach and can benefit from the development of whole cell assays that are robust, simple and versatile, and allow for high throughput testing of antibacterial activity. In this study, we created and validated two bioluminescent reporter strains for high-throughput screening, one in Pseudomonas aeruginosa, and another in a hyperporinated and efflux-deficient Escherichia coli.
View Article and Find Full Text PDFVet Sci
November 2024
Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh.
Antimicrobial resistance (AMR) is a growing global concern and poses a significant threat to public health. The emergence of multidrug-resistant organisms, including , also presents a risk of transmission to humans through the food chain, including milk. This study aimed to investigate the prevalence of in raw milk in the Chattogram metropolitan area (CMA) of Bangladesh and their phenotypic and genotypic antimicrobial resistance patterns.
View Article and Find Full Text PDFFoodborne Pathog Dis
December 2024
Department of Pediatric Nephrology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey.
Shiga toxin-producing (STEC) refers to a group of bacteria that can cause infections, which are common worldwide and pose a serious public health problem, as they can lead to conditions such as hemorrhagic colitis and hemolytic uremic syndrome (HUS). HUS is a disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Determination of serogroups and toxin profiles of STEC is important for estimating their disease-causing potential and predicting epidemiological changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!