Analytical modification of EDFM for transient flow in tight rocks.

Sci Rep

Petroleum Engineering, Lousiana State University, 3207 Patrick F. Taylor Hall, Baton Rouge, LA, 70803, USA.

Published: December 2022

The commercial development of unconventional resources with multiply fractured horizontal wells has been in the spotlight over the last ten years because of the significant contribution of unconventional oil and gas (UOG) reservoirs to the total US oil and gas production. UOG reservoirs contain multiscale fractures with heterogeneous properties, so the focus has been on efficient and accurate models that can account for these fractures individually. One of such models is the embedded discrete fracture model (EDFM), which has been applied to various types of fractured reservoirs. This work shows that the application of EDFM in fractured tight rocks yields significant errors because it cannot account for the expected transient flow between the matrix and fractures. To address the limitation when EDFM is used in tight rocks with structured Cartesian grids, we modified the matrix/fracture non-neighboring connection (NNC) flux in EDFM by multiplying it with a transient factor. We obtained this factor as in the transient matrix/fracture transfer term for dual-continuum models and implemented it in in our open-source shale simulator. We simulated a single vertical fracture in the middle of a tight reservoir with and without this EDFM modification and show the importance of the proposed modification. We also simulated cyclic gas enhanced oil recovery (CGEOR) in a fractured Bakken shale oil well and analyzed the model results using standard rate-transient analysis plots to evaluate the significance of the proposed modification. The results show that the standard EDFM underestimates oil and gas production by up to 73% at early times. This work presents the first analytical modification of EDFM to account for the nonlinear pressure drop expected near fracture surfaces. Comparing the modified and standard EDFM model results to a reference solution shows that the modified EDFM matches it. In contrast, the standard EDFM cannot match the reference solution when we use structured Cartesian grids with linear spacing. Additionally, by timing the simulation of a representative Bakken shale oil reservoir with 256 fractures, we show that the analytical modification proposed is only 1.5% slower than the standard EDFM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768198PMC
http://dx.doi.org/10.1038/s41598-022-26536-wDOI Listing

Publication Analysis

Top Keywords

standard edfm
16
analytical modification
12
edfm
12
tight rocks
12
oil gas
12
modification edfm
8
transient flow
8
uog reservoirs
8
gas production
8
structured cartesian
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!