Test methods in anti-doping, most of which rely on the most modern mass spectrometric instrumentation, undergo continuous optimization in order to accommodate growing demands as to comprehensiveness, sensitivity, retrospectivity, cost-effectiveness, turnaround times, etc. While developing and improving analytical approaches is vital for appropriate sports drug testing programs, the combination of today's excellent analytical potential and the inevitable exposure of humans to complex environmental factors, specifically chemicals and drugs at the lowest levels, has necessitated dedicated research, particularly into the elite athlete's exposome. Being subjected to routine doping controls, athletes frequently undergo blood and/or urine tests for a plethora of drugs, chemicals, corresponding metabolic products, and various biomarkers. Due to the applicable anti-doping regulations, the presence of prohibited substances in an athlete's organism can constitute an anti-doping rule violation with severe consequences for the individual's career (in contrast to the general population), and frequently the question of whether the analytical data can assist in differentiating scenarios of 'doping' from 'contamination through inadvertent exposure' is raised. Hence, investigations into the athlete's exposome and how to distinguish between deliberate drug use and potential exposure scenarios have become a central topic of anti-doping research, aiming at supporting and consolidating the balance between essential analytical performance characteristics of doping control test methods and the mandate of protecting the clean athlete by exploiting new strategies in sampling and analyzing specimens for sports drug-testing purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/sms.14228 | DOI Listing |
Anal Chem
January 2025
Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
Oxymetholone and methasterone are anabolic androgenic steroids prohibited by the World Anti-Doping Agency (WADA) for both in-competition and out-of-competition use. Detecting metabolites of exogenous steroids is crucial for establishing doping violations, making the study of these metabolites essential in antidoping efforts. This study investigated the urinary metabolic profiles of oxymetholone and methasterone using gas chromatography-orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) in nanogram level by utilizing a novel multiplex nontargeted framework protocol.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, No.41 Linyin Road, Baotou, Inner Mongolia, 014010, China.
The tendon-bone interface, known as the tenosynovial union or attachment, can be easily damaged by excessive exercise or trauma. Tendon-bone healing is a significant research topic in orthopedics, encompassing various aspects of sports injuries and postoperative recovery. Surgery is the most common treatment; however, it has limited efficacy in promoting tendon-bone healing and carries a risk of postoperative recurrence, necessitating the search for more effective treatments.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
School of Health Sciences, Universidad Internacional de La Rioja, Logroño 26006, La Rioja, Spain.
This article comments on the work by Soresi and Giannitrapani. The authors have stated that one of the most novel and promising treatments for metabolic dysfunction-associated steatotic liver disease (MASLD) is the use of glucagon-like peptide 1 receptor agonists, especially when used in combination therapy. However, despite their notable efficacy, these drugs were not initially designed to target MASLD directly.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, 270-1695, Japan.
Objective: Dictyostelium differentiation-inducing factors 1 and 3 [DIF-1 (1) and DIF-3 (2), respectively], along with their derivatives, such as Ph-DIF-1 (3) and Bu-DIF-3 (4), demonstrate antibacterial activity in vitro against Gram-positive bacteria, including methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), vancomycin-sensitive Enterococcus faecalis (VSE), and vancomycin-resistant Enterococcus faecium [VRE (VanA)]. This study investigates the therapeutic potential of DIF compounds against these Gram-positive bacteria.
View Article and Find Full Text PDFBackground: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!