We experimentally demonstrated an all-fiber focused vortex beam (FVB) generator which was prepared by milling a spiral zone plate (SZP) on the Au-coated end face of a hybrid fiber by focused ion beam (FIB). In this generator, the fundamental modes propagating in the hybrid fiber are focused while being modulated into high-order orbital angular momentum (OAM) mode by the SZP at the end face. The focus length and topological charge were designed and then were both theoretically and experimentally verified. The results show that, the obtained characteristics of the FVB agree with the designed ones. The measured diameters of the focal spots are 2.2 µm, 4.4 µm, and 5.2 µm for the FVB with the topological charge of 0, 1, and 2, respectively. The simulated results show that the proposed FVB generators can maintain good focusing characteristics in different liquids, so it is a good candidate for optical fiber spanner use in a complex liquid environment. Moreover, the processing efficiency of the proposed FVB generators is nearly ten times higher than that of the previously reported ones due to the Au-coated film.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.465949 | DOI Listing |
J Biomech Eng
January 2025
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Yuquan Campus, 38 Zheda Road, Hangzhou 310027, Zhejiang, China; Shanghai Institute for Advanced Study of Zhejiang University, Zhangjiang Guochuang Center phase, No.799, Dangui Road, Shanghai 200120, China.
The carotid and vertebral arteries are principal conduits for cerebral blood supply and are common sites for atherosclerotic plaque formation. To date, there has been extensive clinical and hemodynamic reporting on carotid arteries; however, studies focusing on the hemodynamic characteristics of the vertebral artery (VA) are notably scarce. This article presents a systematic analysis of the impact of VA diameter and the angle of divergence from the subclavian artery (SA) on hemodynamic properties, facilitated by the construction of an idealized VA geometric model.
View Article and Find Full Text PDFSci Rep
January 2025
School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.
View Article and Find Full Text PDFLight Sci Appl
January 2025
School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg, 2050, South Africa.
Optical metrology is a well-established subject, dating back to early interferometry techniques utilizing light's linear momentum through fringes. In recent years, significant interest has arisen in using vortex light with orbital angular momentum (OAM), where the phase twists around a singular vortex in space or time. This has expanded metrology's boundaries to encompass highly sensitive chiral interactions between light and matter, three-dimensional motion detection via linear and rotational Doppler effects, and modal approaches surpassing the resolution limit for improved profiling and quantification.
View Article and Find Full Text PDFJASA Express Lett
December 2024
Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78766-9767, USA.
Analytical solutions for acoustic vortex beams radiated by sources with uniform circular amplitude distributions are derived in the paraxial approximation. Evaluation of the Fresnel diffraction integral in the far field of an unfocused source and in the focal plane of a focused source leads to solutions in terms of an infinite series of Bessel functions for orbital numbers ℓ>-2. These solutions are reduced to closed forms for 0≤ℓ≤4, which correspond to orbital numbers commonly used in experiments.
View Article and Find Full Text PDFACS Omega
December 2024
School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, PR China.
The fly ash generated by coal combustion is one of the main sources of PM2.5, so the particulate matter removal technology of coal-fired boilers is receiving increasing attention. Turbulent agglomeration has emerged as a powerful tool for improving the efficiency of removing fine particulates from environments, sparking interest in its study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!