Delineating the impacts of air temperature and humidity for endurance exercise.

Exp Physiol

School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.

Published: February 2023

AI Article Synopsis

  • The study investigates how air temperature and humidity independently affect endurance exercise performance, physiological responses, and subjective feelings of effort.
  • Elevated air temperature increases heat strain and negatively impacts aerobic performance, though not as severely as previously thought.
  • The research emphasizes that absolute humidity plays a crucial role in exercise performance under heat stress, making it a key factor to consider in endurance training and competition.

Article Abstract

New Findings: What is the central question of this study? What are the independent effects of air temperature and humidity on performance, physiological and perceptual responses during endurance exercise? What is the main finding and its importance? When examined independently, elevated air temperature increased heat strain and impaired aerobic exercise performance, but to a lesser extent than has been reported previously. These findings highlight the importance of absolute humidity relative to temperature when exercising or working under severe heat stress.

Abstract: Many studies have reported that ambient heat stress increases physiological and perceptual strain and impairs endurance exercise, but effects of air temperature per se remain almost unexamined. Most studies have used matched relative humidity, thereby exponentially increasing absolute humidity (water content in air) concurrently with temperature. Absolute (not relative) humidity governs evaporative rate and is more important at higher work rates and air temperatures. Therefore, we examined the independent effects of air temperature and humidity on performance, thermal, cardiovascular and perceptual measures during endurance exercise. Utilizing a crossover design, 14 trained participants (7 females) completed 45 min fixed-intensity cycling (70% ) followed by a 20-km time trial in each of four environments: three air temperatures at matched absolute humidity (Cool, 18°C; Moderate, 27°C; and Hot, 36°C; at 1.96 kPa, air velocity ∼4.5 m/s), and one at elevated humidity (Hot Humid, 36°C at 3.92 kPa). Warmer air caused warmer skin (0.5°C/°C; P < 0.001), higher heart rate (1 bpm/°C; P < 0.001), sweat rate (0.04 l/h/°C; P < 0.001) and thermal perceptions during fixed-intensity exercise, but minimally affected core temperature (<0.01°C/°C; P = 0.053). Time-trial performance was comparable between Cool and Moderate (95% CI: -1.4, 5.9%; P = 0.263), but 3.6-6% slower in Hot (95% CI: ±2.4%; P ≤ 0.006). Elevated humidity increased core temperature (P < 0.001), perceived temperature and discomfort but not skin temperature or heart rate, and reduced mean blood pressure (P = 0.046) during fixed-intensity exercise. Elevated humidity impaired time-trial performance by 3.4% (95% CI: ±2.2%; P = 0.006). In conclusion, these findings quantify the importance of absolute humidity alongside air temperature when exercising under severe heat stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103870PMC
http://dx.doi.org/10.1113/EP090969DOI Listing

Publication Analysis

Top Keywords

air temperature
20
temperature humidity
12
endurance exercise
12
effects air
12
absolute humidity
12
air
10
humidity
9
independent effects
8
humidity performance
8
physiological perceptual
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!