Grafting of maleic anhydride on poly(lactic acid)/hydroxyapatite composites augments their ability to support osteogenic differentiation of human mesenchymal stem cells.

J Biomater Appl

National Nanotechnology Laboratory for Agribusiness, Brazilian Agricultural Research Corporation, 564899Embrapa Instrumentation, São Paulo, Brazil.

Published: February 2023

Implantation of bone substitutes is the treatment of choice for bone defects exceeding a critical size, when self-healing becomes impossible. The use of 3D printing techniques allows the construction of scaffolds with customized properties. However, there is a lack of suitable materials for bone replacement. In this study, maleic anhydride-grafted poly (lactic acid) (MAPLA) was investigated as a potential compatibilizer agent for 3D-printed polylactic acid (PLA)/hydroxyapatite (HA) composites, in order to enhance the physicochemical and biological properties of the scaffolds. The grafting process was performed by reactive processing in a torque rheometer, with the evaluation of the use of different concentrations of maleic anhydride (MA). The success of the grafting reaction was confirmed by titration of acid groups and spectroscopic analyses, indicating the presence of succinic anhydride groups on the PLA chain. Morphological analysis of the PLA/HA 3D scaffolds, using SEM, revealed that the use of the compatibilizer resulted in a structure free from voids and holes. The compatibilization also increased the degradation process. On the other hand, TGA and DSC analyses revealed that the use of a compatibilizer had little effect on the thermal properties of the composite. Most importantly, the samples with compatibilizer were demonstrated to have a minimal cytotoxic effect on human mesenchymal stem cells (MSCs), promoting the osteogenic differentiation of these cells in a medium without the addition of classical osteogenic factors. Therefore, the grafting of PLA/HA composites improved their physicochemical and biological properties, especially the induction of MSC osteogenic differentiation, demonstrating the potential of these scaffolds for bone tissue replacement.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08853282221147422DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
12
maleic anhydride
8
human mesenchymal
8
mesenchymal stem
8
stem cells
8
physicochemical biological
8
biological properties
8
revealed compatibilizer
8
grafting
4
grafting maleic
4

Similar Publications

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

Osteoporosis is caused by an imbalance between bone resorption and formation, which decreases bone mass and strength and increases the risk of fracture. Therefore, osteoporosis is treated with oral resorption inhibitors, such as bisphosphonates, and parenteral osteogenic drugs, including parathyroid hormone and antisclerostin antibodies. However, orally active osteogenic drugs have not yet been developed.

View Article and Find Full Text PDF

With the rise of bone tissue engineering (BET), 3D-printed HA/PCL scaffolds for bone defect repair have been extensively studied. However, little research has been conducted on the differences in osteogenic induction and regulation of macrophage (MPs) polarisation properties of HA/PCL scaffolds with different fibre orientations. Here, we applied 3D printing technology to prepare three sets of HA/PCL scaffolds with different fibre orientations (0-90, 0-90-135, and 0-90-45) to study the differences in physicochemical properties and to investigate the response effects of MPs and bone marrow mesenchymal stem cells (BMSCs) on scaffolds with different fibre orientations.

View Article and Find Full Text PDF

Novel Foamed Magnesium Phosphate Antimicrobial Bone Cement for Bone Augmentation.

J Biomed Mater Res B Appl Biomater

January 2025

Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.

In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.

View Article and Find Full Text PDF

The effect of LARP7 on gene expression during osteogenesis.

Mol Biol Rep

January 2025

Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.

Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!