Stereospecific recognition of a chiral centre over multiple flexible covalent bonds by F-NMR.

Analyst

State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Tianjin 300071, China.

Published: January 2023

High performance in chiral recognition by a reactive F-tag was demonstrated for a variety of enantiomers. The analytes with up to five flexible covalent bonds from the chiral center can be discriminated by a sensitive chiral reporter manifested in the F-NMR spectrum. Simultaneous identification of chiral amines in a mixture and high accuracy ee determination were achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2an01632jDOI Listing

Publication Analysis

Top Keywords

flexible covalent
8
covalent bonds
8
chiral
5
stereospecific recognition
4
recognition chiral
4
chiral centre
4
centre multiple
4
multiple flexible
4
bonds f-nmr
4
f-nmr high
4

Similar Publications

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

Near-infrared (NIR)-triggered type-I photosensitizers are crucial to address the constraints of hypoxic tumor microenvironments in phototherapy; however, significant challenges remain. By selecting an electron-deficient unit, a matched energy gap in the upper-level state is instrumental in boosting the efficiency of intersystem crossing for the type-I electron transfer process. 2-Cyanothiazole, an electron acceptor, is covalently linked with N, N-diphenyl-4-(thiophen-2-yl)aniline to yield a multifunctional photosensitizer (TTNH) that exhibits intrinsic NIR absorbance and compatible T energy levels, facilitating both radiative and nonradiative transitions.

View Article and Find Full Text PDF

Engineering Peptide-Based Molecular Baits for Targeted Fishing and Protein Profiling of Exosomes as a Liquid Biopsy for Gastrointestinal Adenocarcinoma.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids.

View Article and Find Full Text PDF

The advancement in materials chemistry promoted the growth of energy storage systems such as capacitors, supercapacitors and batteries. Covalent organic frameworks and nanomaterials have significantly improved the performance of various energy storage systems. Because of the unique properties of these materials, like high surface area, tunable architectures, and enhanced conductivity, researchers have developed effective and durable energy storage solutions for multiple applications.

View Article and Find Full Text PDF

A divergent two-domain structure of the anti-Müllerian hormone prodomain.

Proc Natl Acad Sci U S A

January 2025

Department of Molecular & Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267.

TGFβ family ligands are synthesized as precursors consisting of an N-terminal prodomain and C-terminal growth factor (GF) signaling domain. After proteolytic processing, the prodomain typically remains noncovalently associated with the GF, sometimes forming a high-affinity latent procomplex that requires activation. For the TGFβ family ligand anti-Müllerian hormone (AMH), the prodomain maintains a high-affinity interaction with its GF that does not render it latent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!