Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mutual conversion between light and electricity lies at the heart of optoelectronic and photonic applications. Maximization of the photoelectric conversion is a long-term goal that can be pursued via the fabrication of devices with ad-hoc architectures. In this framework, it is of utter importance to harvest and transform light irradiation into high electric potential in specific area for driving functional dielectrics that respond to pure electric field. Here, a nano-fabrication technology has been devised featuring double self-alignment that is applied to construct zebra-like asymmetric heterojunction arrays. Such nanostructured composite, which covers a surface area of 5 × 4 mm and contains 500 periodic repeating units, is capable of photo generating voltages as high as 140 V on a flexible substrate. This approach represents a leap over the traditional functionalization process based on simply embedding materials into devices by demonstrating the disruptive potential of integrating oriented nanoscale device components into meta-material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202209482 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!