Cu(II) complexes supported by tetradentate amido-quinoline acyclic ligands (L1 & L2) have been synthesized, characterized, and employed as catalysts for aromatic C-H hydroxylation using HO as an oxidant in the absence of an external base with a high selectivity of around 90% for phenols the non-radical pathway (TON ≥720). The KIE value, various spectroscopic studies and DFT calculation supported the involvement of Cu(II)-OOH species.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt03242bDOI Listing

Publication Analysis

Top Keywords

catalysts aromatic
8
aromatic c-h
8
bio-inspired cuii
4
cuii amido-quinoline
4
amido-quinoline complexes
4
complexes catalysts
4
c-h bond
4
bond hydroxylation
4
hydroxylation cuii
4
cuii complexes
4

Similar Publications

Constructing an Isopolymolybdate-Based Bifunctional Photocatalyst for Promoting Nitroaromatic Reduction and C-H Oxidation.

Inorg Chem

December 2024

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Amide compounds are widely present in drug molecules and natural products, which can be synthesized by acid-amine condensation. It is urgent to design new photocatalysts for achieving both nitroaromatic reduction and C-H oxidation to obtain raw materials, carboxylic acids, and aromatic amines. Herein, a novel isopolymolybdate-incorporated photoactive metal-organic framework, -TPT, was constructed by combining the oxidation catalyst [MoO], Ni(II) cation, and photosensitive ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (TPT).

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

December 2024

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

Alkali-Cation-Selective Arylation Promoted by Ion Recognition of Foldamers.

Org Lett

December 2024

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.

To explore alkali-cation selectivity at the chemical reaction level, in this work, we for the first time focused on the different behaviors of potassium and sodium ions in intra- and intermolecular arylation. We prepared a series of aromatic foldamers based on pyridine/oxadiazole alternating sequences as the catalysts for the arylation. Our studies revealed that foldamers can selectively recognize K over Na and the interactions between foldamers and K drive the arylation with a significant yield.

View Article and Find Full Text PDF

Grafting carbon-based nanomaterials (CNMs) with polyglycerol (PG) improves their application potentials in biomedicine and electronics. Although "grafting from" method offers advantages over "grafting to" one in terms of operability and versatility, little is known about the reaction process of glycidol with the surface groups onto CNMs. By using graphene oxide (GO) as a multi-functional model material, we examined the reactivity of the surface groups on GO toward glycidol molecules via a set of model reactions.

View Article and Find Full Text PDF

Single-Atom based Metal-Organic Frameworks for Efficient C-S Cross-Coupling.

Chem Asian J

December 2024

IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemistry, 16000, CZECHIA.

Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (UiO-66/Ni) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 framework, synthesized via a straightforward solution impregnation method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!