Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Abrupt socioeconomic changes have become increasingly commonplace. In face of these, both institutions and individuals must adapt. Against the backdrop of the COVID-19 pandemic, suddenness, scale, and impacts of which are unprecedented as compared to its counterparts in history, we first propose transferable measures and methods that can be used to quantify and geovisualize COVID-19 and subsequent events' impacts on metro riders' travel behaviors. Then we operationalize and implement those measures and methods with empirical data from Hong Kong, a metropolis heavily reliant on transit/metro services. We map out where those impacts were the largest and explores its correlates. We exploit the best publicly available data to assemble probable explanatory variables and to examine quantitatively whether those variables are correlated to the impacts and if so, to what degree. We find that both macro- and meso-level external/internal events following the COVID-19 outbreak significantly influenced of metro riders' behaviors. The numbers of public rental housing residents, public and medical facilities, students' school locations, residents' occupation, and household income significantly predict the impacts. Also, the impacts differ across social groups and locales with different built-environment attributes. This means that to effectively manage those impacts, locale- and group-sensitive interventions are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753124 | PMC |
http://dx.doi.org/10.1016/j.apgeog.2021.102504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!