Nowadays, the number of sudden deaths due to heart disease is increasing with the coronavirus pandemic. Therefore, automatic classification of electrocardiogram (ECG) signals is crucial for diagnosis and treatment. Thanks to deep learning algorithms, classification can be performed without manual feature extraction. In this study, we propose a novel convolutional neural networks (CNN) architecture to detect ECG types. In addition, the proposed CNN can automatically extract features from images. Here, we classify a real ECG dataset using our proposed CNN which includes 34 layers. While this dataset is one-dimensional signals, these are transformed into images (scalograms) using continuous wavelet transform (CWT). In addition, the proposed CNN is compared to known architectures: AlexNet and SqueezeNet for classifying ECG images, and we find it more effective than others. This study, which not only performed CWT but also implemented short-time Fourier transform, examines the success in recognizing ECG types for the proposed CNN. Besides, different split methods: training and testing, and cross-validation are applied in this study. Eventually, CWT and cross-validation are the best pre-processing and split methods for the proposed CNN, respectively. Although the results are quite good, we benefit from support vector machines (SVM) to obtain the best algorithm and for detecting ECG types. Essentially, the main aim of the study increases classification results. In this way, the proposed CNN is utilized as deep feature extractor and combined with SVM. As a conclusion of this study, we achieve the highest accuracy of 99.21% from the proposed CNN-SVM when using CWT. Therefore, we can express that this framework can be used as an aid to clinicians for ECG-type identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753894 | PMC |
http://dx.doi.org/10.1007/s00500-022-07729-x | DOI Listing |
Sci Rep
January 2025
Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.
View Article and Find Full Text PDFAccurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Charles Nicolle Hospital, Tunis El Manar University, Tunis, Tunisia.
Traumatic brain injuries present significant diagnostic challenges in emergency medicine, where the timely interpretation of medical images is crucial for patient outcomes. In this paper, we propose a novel AI-based approach for automatic radiology report generation tailored to cranial trauma cases. Our model integrates an AC-BiFPN with a Transformer architecture to capture and process complex medical imaging data such as CT and MRI scans.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China.
Hypertrophic cardiomyopathy (HCM), including obstructive HCM and non-obstructive HCM, can lead to sudden cardiac arrest in adolescents and athletes. Early diagnosis and treatment through auscultation of different types of HCM can prevent the occurrence of malignant events. However, it is challenging to distinguish the pathological information of HCM related to differential left ventricular outflow tract pressure gradients.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China.
Accurately and swiftly segmenting breast tumors is significant for cancer diagnosis and treatment. Ultrasound imaging stands as one of the widely employed methods in clinical practice. However, due to challenges such as low contrast, blurred boundaries, and prevalent shadows in ultrasound images, tumor segmentation remains a daunting task.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!