Rhesus cytomegalovirus (RhCMV)-based vaccination against Simian Immunodeficiency virus (SIV) elicits MHC-E-restricted CD8+ T cells that stringently control SIV infection in ~55% of vaccinated rhesus macaques (RM). However, it is unclear how accurately the RM model reflects HLA-E immunobiology in humans. Using long-read sequencing, we identified 16 Mamu-E isoforms and all Mamu-E splicing junctions were detected among HLA-E isoforms in humans. We also obtained the complete Mamu-E genomic sequences covering the full coding regions of 59 RM from a RhCMV/SIV vaccine study. The Mamu-E gene was duplicated in 32 (54%) of 59 RM. Among four groups of Mamu-E alleles: three ~5% divergent full-length allele groups (G1, G2, G2_LTR) and a fourth monomorphic group (G3) with a deletion encompassing the canonical Mamu-E exon 6, the presence of G2_LTR alleles was significantly (p = 0.02) associated with the lack of RhCMV/SIV vaccine protection. These genomic resources will facilitate additional MHC-E targeted translational research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9762870 | PMC |
http://dx.doi.org/10.1038/s42003-022-04344-2 | DOI Listing |
Front Immunol
October 2024
Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, United States.
Microbiol Spectr
November 2024
Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA.
Front Immunol
August 2024
Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States.
Simian immunodeficiency virus (SIV) vaccines based upon 68-1 Rhesus Cytomegalovirus (RhCMV) vectors show remarkable protection against pathogenic SIVmac239 challenge. Across multiple independent rhesus macaque (RM) challenge studies, nearly 60% of vaccinated RM show early, complete arrest of SIVmac239 replication after effective challenge, whereas the remainder show progressive infection similar to controls. Here, we performed viral sequencing to determine whether the failure to control viral replication in non-protected RMs is associated with the acquisition of viral escape mutations.
View Article and Find Full Text PDFBackground: RhCMV/SIV vaccines protect ∼59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is not known. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection.
View Article and Find Full Text PDFJCI Insight
March 2023
Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA.
Rhesus cytomegalovirus-based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory-based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!