Drawings offer a simple and efficient way to communicate meaning. While line drawings capture only coarsely how objects look in reality, we still perceive them as resembling real-world objects. Previous work has shown that this perceived similarity is mirrored by shared neural representations for drawings and natural images, which suggests that similar mechanisms underlie the recognition of both. However, other work has proposed that representations of drawings and natural images become similar only after substantial processing has taken place, suggesting distinct mechanisms. To arbitrate between those alternatives, we measured brain responses resolved in space and time using fMRI and MEG, respectively, while human participants (female and male) viewed images of objects depicted as photographs, line drawings, or sketch-like drawings. Using multivariate decoding, we demonstrate that object category information emerged similarly fast and across overlapping regions in occipital, ventral-temporal, and posterior parietal cortex for all types of depiction, yet with smaller effects at higher levels of visual abstraction. In addition, cross-decoding between depiction types revealed strong generalization of object category information from early processing stages on. Finally, by combining fMRI and MEG data using representational similarity analysis, we found that visual information traversed similar processing stages for all types of depiction, yet with an overall stronger representation for photographs. Together, our results demonstrate broad commonalities in the neural dynamics of object recognition across types of depiction, thus providing clear evidence for shared neural mechanisms underlying recognition of natural object images and abstract drawings. When we see a line drawing, we effortlessly recognize it as an object in the world despite its simple and abstract style. Here we asked to what extent this correspondence in perception is reflected in the brain. To answer this question, we measured how neural processing of objects depicted as photographs and line drawings with varying levels of detail (from natural images to abstract line drawings) evolves over space and time. We find broad commonalities in the spatiotemporal dynamics and the neural representations underlying the perception of photographs and even abstract drawings. These results indicate a shared basic mechanism supporting recognition of drawings and natural images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864561PMC
http://dx.doi.org/10.1523/JNEUROSCI.1546-22.2022DOI Listing

Publication Analysis

Top Keywords

natural images
20
drawings
12
drawings natural
12
types depiction
12
abstract drawings
12
neural dynamics
8
dynamics object
8
object recognition
8
recognition natural
8
shared neural
8

Similar Publications

Male infertility is a common complication of diabetes. Diabetes leads to the decrease of zinc (Zn) content, which is a necessary trace element to maintain the normal structure and function of reproductive organs and spermatogenesis. The purpose of this study was to investigate the effect of metformin combined with zinc on testis and sperm in diabetic mice.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Objective: Using F-FDG PET/CT metabolic parameters to differentiate post-transplant lymphoproliferative disorder (PTLD) and reactive lymphoid hyperplasia (RLH), and PTLD subtypes.

Methods: F-FDG PET/CT and clinical data from 63 PTLD cases and 19 RLH cases were retrospectively collected. According to the 2017 WHO classification, PTLD was categorized into four subtypes: nondestructive (ND-PTLD), polymorphic (P-PTLD), monomorphic (M-PTLD), and classic Hodgkin.

View Article and Find Full Text PDF

Background: Clavicle fractures associated with ipsilateral coracoid process fractures are very rare, with limited literature reporting only a few cases. This study reports on 27 patients with ipsilateral concomitant fractures of the clavicle and coracoid process who were followed for more than 12 months.

Material And Methods: This retrospective study reviewed the charts of skeletally mature patients with traumatic ipsilateral clavicle and coracoid process fractures treated at the authors' institution.

View Article and Find Full Text PDF

Introduction: Blunt traumatic aortic injury (TAI) is a critical condition and a leading cause of mortality in trauma patients, often resulting from high-speed accidents. Thoracic endovascular aortic repair (TEVAR) has developed into the preferred therapeutic approach due to its minimally invasive nature and promising outcomes. This study evaluates the safety and efficacy of TEVAR for managing TAI over a 10-year period at a Level-1 trauma center.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!