AI Article Synopsis

  • - Human vision uses separate ON and OFF pathways to process light and dark stimuli, which behave differently depending on luminance contrast in the visual environment.
  • - At high contrast, dark stimuli can be detected faster and more accurately due to the dominance of the OFF pathway, while at low contrast, light stimuli are perceived better, indicating a shift to ON pathway dominance.
  • - The study suggests that understanding these ON-OFF dynamics can aid in diagnosing vision issues, particularly regarding low-contrast challenges that arise from ON pathway impairments.

Article Abstract

Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014). ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908321PMC
http://dx.doi.org/10.1523/JNEUROSCI.1672-22.2022DOI Listing

Publication Analysis

Top Keywords

human vision
20
luminance contrast
16
faster accurately
16
dark stimuli
12
contrast
12
shifts dominance
8
pathways
8
visual
8
rahimi-nasrabadi 2021
8
stimuli faster
8

Similar Publications

Purpose: The retina contains the highest concentration of the omega 3 fatty acid, docosahexaenoic acid (DHA), in the body. Although epidemiologic studies showed an inverse correlation between the consumption of omega 3 fatty acids and the prevalence of diabetic retinopathy, there are no data showing the effect of diabetes on retinal DHA in humans. In this study, we measured the DHA content of the retina in diabetic and non-diabetic humans as well as mice and determined the effect of diabetes on retinal thickness and function in mice.

View Article and Find Full Text PDF

: This study investigates the relationship between lower limb strength and postural stability in single-leg stance using the Balance Master system. : The research involved 64 participants divided into sedentary and physically active groups based on metabolic equivalents of task (METs) values, normal weight, overweight, and obese according to body composition. Postural control was evaluated using the Sensory Organization Test.

View Article and Find Full Text PDF

Determining the maturity of cocoa pods early is not just about guaranteeing harvest quality and optimizing yield. It is also about efficient resource management. Rapid identification of the stage of maturity helps avoid losses linked to a premature or late harvest, improving productivity.

View Article and Find Full Text PDF

Computer Vision-Based Gait Recognition on the Edge: A Survey on Feature Representations, Models, and Architectures.

J Imaging

December 2024

Department of Mechatronics Engineering, Universidad Católica Boliviana "San Pablo", La Paz 4807, Bolivia.

Computer vision-based gait recognition (CVGR) is a technology that has gained considerable attention in recent years due to its non-invasive, unobtrusive, and difficult-to-conceal nature. Beyond its applications in biometrics, CVGR holds significant potential for healthcare and human-computer interaction. Current CVGR systems often transmit collected data to a cloud server for machine learning-based gait pattern recognition.

View Article and Find Full Text PDF

Artificial intelligence (AI) is becoming increasingly influential in ophthalmology, particularly through advancements in machine learning, deep learning, robotics, neural networks, and natural language processing (NLP). Among these, NLP-based chatbots are the most readily accessible and are driven by AI-based large language models (LLMs). These chatbots have facilitated new research avenues and have gained traction in both clinical and surgical applications in ophthalmology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!