Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
5-Lipoxygenase (LO) catalyzes the first steps in the formation of pro-inflammatory leukotrienes (LT) that are pivotal lipid mediators contributing to allergic reactions and inflammatory disorders. Based on its key role in LT biosynthesis, 5-LO is an attractive drug target, demanding for effective and selective inhibitors with efficacy in vivo, which however, are still rare. Encouraged by the recent identification of the catechol 4-(3,4-dihydroxyphenyl)dibenzofuran 1 as 5-LO inhibitor, simple structural modifications were made to yield even more effective and selective catechol derivatives. Within this new series, the two most potent compounds 3,4-dihydroxy-3'-phenoxybiphenyl (6b) and 2-(3,4-dihydroxyphenyl)benzo[b]thiophene (6d) potently inhibited human 5-LO in cell-free (IC6b and 6d = 20 nM) and cell-based assays (IC6b = 70 nM, 6d = 60 nM). Inhibition of 5-LO was reversible, unaffected by exogenously added substrate arachidonic acid, and not primarily mediated via radical scavenging and antioxidant activities. Functional 5-LO mutants expressed in HEK293 cells were still prone to inhibition by 6b and 6d, and docking simulations revealed distinct binding of the catechol moiety to 5-LO at an allosteric site. Analysis of 5-LO nuclear membrane translocation and intracellular Ca mobilization revealed that these 5-LO-activating events are hardly affected by the catechols. Importantly, the high inhibitory potency of 6b and 6d was confirmed in human blood and in a murine zymosan-induced peritonitis model in vivo. Our results enclose these novel catechol derivatives as highly potent, novel type inhibitors of 5-LO with high selectivity and with marked effectiveness under pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2022.115385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!