This study aimed to assess the influence of municipal solid waste (MSW) disposal on soil microbial communities. Soil samples from 20 different locations of an MSW dumping site contaminated with toxic heavy metals (HMs) and a native forest (as control) were collected for phospholipid fatty acid (PLFA) profiling to predict microbial community responses towards unsegregated disposal of MSW. PLFA biomarkers specific to arbuscular mycorrhizal fungi (AMF), Gram-negative and Gram-positive bacteria, fungi, eukaryotes, actinomycetes, anaerobes, and microbial stress markers-fungi: bacteria (F/B) ratio, Gram-positive/Gram-negative (GP/GN) ratio, Gram-negative stress (GNStr) ratio and predator/prey ratio along with AMF spore density and the total HM content (Cu, Cr, Cd, Mn, Zn, and Ni) were assessed. The results showed that all of the PLFA microbial biomarkers and the F/B ratio were positively correlated, while HMs and microbial stress markers were negatively correlated. The significant correlation of AMF biomass with all microbial groups, the F/B ratio, and T. PLFA confirmed its significance as a key predictor of microbial biomass. With AMF and T. PLFA, Cd and Cr had a weak or negative connection. Among the toxic HMs, Zn and Cd had the greatest impact on microbial populations. Vegetation did not have any significant effect on soil microbial communities. This research will aid in the development of bioinoculants for the bioremediation of MSW-polluted sites and will improve our understanding of the soil microbial community's ability to resist, recover, and adapt to toxic waste contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.114993DOI Listing

Publication Analysis

Top Keywords

soil microbial
12
f/b ratio
12
microbial
11
plfa profiling
8
microbial community
8
municipal solid
8
microbial communities
8
microbial stress
8
ratio
6
plfa
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!