The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells.

Int J Biol Macromol

Bioprocess Engineering Research Group, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran. Electronic address:

Published: February 2023

The role of the blood-brain barrier (BBB) is to control trafficking of biomolecules and protect the brain. This function can be compromised by pathological conditions. Parkinson's disease (PD) is characterized by the accumulation of α-synuclein aggregates (αSN-AGs) such as oligomers and fibrils, which contribute to disease progression and severity. Here we study how αSN-AGs affect the BBB in in vitro co-culturing models consisting of human brain endothelial hCMEC/D3 cells (to overcome inter-species differences) alone and co-cultured with astrocytes and neurons/glial cells. When cultivated on their own, hCMEC/D3 cells were compromised by αSN-AGs, which decreased cellular viability, mitochondrial membrane potential, wound healing activity, TEER value, and enhanced permeability, as well as increased the levels of ROS and NO. Co-culturing of these cells with activated microglia also increased BBB impairment according to TEER and systemic immune cell transmigration assays. In contrast, hCMEC/D3 cells co-cultured with astrocytes or dopaminergic neurons or simultaneously treated with their conditioned media showed increased resistance against αSN-AGs. Our work demonstrates the complex relationship between members of the neurovascular unit (NVU) (perivascular astrocytes, neurons, microglia, and endothelial cells), αSN-AGs and BBB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.12.134DOI Listing

Publication Analysis

Top Keywords

hcmec/d3 cells
12
α-synuclein aggregates
8
blood-brain barrier
8
neurovascular unit
8
co-cultured astrocytes
8
cells
7
αsn-ags
5
impact α-synuclein
4
aggregates blood-brain
4
barrier integrity
4

Similar Publications

Oxidative stress and neuroinflammation play a pivotal role in pathomechanisms of brain ischemia. Our research aimed to formulate a nanotheranostic system for delivering carnosic acid as a neuroprotective agent with anti-oxidative and anti-inflammatory properties to ischemic brain tissue, mimicked by organotypic hippocampal cultures (OHCs) exposed to oxygen-glucose deprivation (OGD). In the first part of this study, the nanocarriers were formulated by encapsulating two types of nanocores (nanoemulsion (AOT) and polymeric (PCL)) containing CA into multilayer shells using the sequential adsorption of charged nanoobjects method.

View Article and Find Full Text PDF

Stroke severity shapes extracellular vesicle profiles and their impact on the cerebral endothelial cells.

J Physiol

January 2025

Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.

Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.

View Article and Find Full Text PDF

A novel histone deacetylase inhibitor protects the blood-brain barrier by regulating NF-κB and Nrf2 signaling pathways in OGD/R injury.

Arch Gerontol Geriatr

December 2024

Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, PR China. Electronic address:

Ischemic stroke, a severe cerebrovascular disease, is particularly prevalent among the elderly. Rsearch has indicated that histone deacetylases (HDACs) are pivotal in the pathogenesis of ischemic stroke. We introduce a novel HDACs inhibitor, HDI-1, as a potential therapeutic strategy for this condition.

View Article and Find Full Text PDF

Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG.

View Article and Find Full Text PDF

Unlabelled: Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!