Background: Yuanjiang decoction (YJD), a traditional Chinese medicinal prescription, has been found to have a significant heart rate-increasing effect and is effective in the treatment of symptomatic bradyarrhythmia in previous studies. However, its specific components and potential mechanisms remain unclear.

Methods: In this study, we detected and identified the main compounds of YJD using liquid chromatography-mass spectrometry (LC-MS). Through the approach of network pharmacology, we predicted the core targets of the active components, bradyarrhythmia targets, and obtained potential anti-bradyarrhythmia targets of YJD. We further performed protein to protein interaction (PPI), gene ontology (GO) enrichment analyses and kyoto encyclopedia of genes and genomes (KEGG) signaling pathway analyses for core targets, and constructed network of key active ingredients-core targets of YJD. Finally, molecular docking and molecular dynamics simulation were performed for key active ingredients and core targets.

Results: The YJD contains a total of 35 main chemical components. The key active ingredients-core targets network contains 36 nodes and 90 edges, including 20 key active ingredients and 16 core targets. The core targets in the PPI network were TP53, TNF, HRAS, PPARG, IL1B, KCNH2, SCN5A, IDH1, LMNA, ACHE, F2, DRD2, CALM1, KCNQ1, TNNI3, IDH2 and TNNT2. KEGG pathway analysis showed that YJD treatment of bradyarrhythmia mainly involves neuroactive ligand-receptor interaction, adrenergic signaling in cardiomyocytes, cAMP signaling pathway, calcium signaling pathway, cholinergic synaptic and serotonergic synapse signaling pathway. The biological processes mainly include regulation of hormone levels, regulation of cardiac contraction, chemical synaptic transmission, circadian rhythm, positive regulation of heart rate, smooth muscle contraction, response to metal ion, oxidation-reduction process, neurotransmitter transport and import across plasma membrane. Molecular docking and molecular dynamics simulation results showed that hesperidin and tetrahydropalmatine had higher affinity with DRD2 and KCNQ1, respectively.

Conclusion: This study reveals the pharmacodynamic material basis of YJD and its potential multicomponent-multitarget-multipathway pharmacological effects, predicted its potential anti-bradyarrhythmia mechanism may be related to the regulation of myocardial autonomic nervous function and related ion channels. Our work demonstrates that YJD has great potential for treating bradyarrhythmias as a complementary medicine, and the results can provide a theoretical basis for the development and clinical application of YJD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2022.106435DOI Listing

Publication Analysis

Top Keywords

core targets
16
signaling pathway
16
key active
16
yjd
9
network pharmacology
8
yuanjiang decoction
8
targets
8
potential anti-bradyarrhythmia
8
targets yjd
8
active ingredients-core
8

Similar Publications

Targeting molecular pathways to control immune checkpoint inhibitor toxicities.

Trends Immunol

December 2024

Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Core Center Heidelberg, 69120 Heidelberg, Germany. Electronic address:

Immune checkpoint inhibitors (ICIs) have transformed cancer treatment but are frequently associated with immune-related adverse events (irAEs). This article offers a novel synthesis of findings from both preclinical and clinical studies, focusing on the molecular mechanisms driving irAEs across diverse organ systems. It examines key immune cells, such as T cell subsets and myeloid cells, which are instrumental in irAE pathogenesis, alongside an in-depth analysis of cytokine signaling [interleukin (IL)-6, IL-17, IL-4), interferon γ (IFN-γ), IL-1β, tumor necrosis factor α (TNF-α)], integrin-mediated interactions [integrin subunits αITGA)4 and ITGB7], and microbiome-related factors that contribute to irAE pathology.

View Article and Find Full Text PDF

Biomimetic membrane-coated nanoparticles specially permeate the inflammatory blood-brain barrier to deliver plasmin therapy for brain metastases.

J Control Release

December 2024

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China. Electronic address:

Many brain-targeting drug delivery strategies have been reported to permeate the blood-brain barrier (BBB) via hijacking receptor-mediated transport. However, these receptor-based strategies could mediate whole-brain BBB crossing due to the wide intracranial expression of target receptors and lead to unwanted accumulation and side effects on healthy brain tissues. Inspired by brain metastatic processes and the selectivity of brain metastatic cancer cells for the inflammatory BBB, a biomimetic nanoparticle was developed by coating drug-loaded core with the inflammatory BBB-seeking erythrocyte-brain metastatic hybrid membrane, which can resist homotypic aggregation and specially bind and permeate the inflammatory BBB for specific drug delivery.

View Article and Find Full Text PDF

Recent advances in spatiotemporal control of the CRISPR/Cas9 system.

Colloids Surf B Biointerfaces

December 2024

School of Life Sciences, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, Hubei 430042, China. Electronic address:

The CRISPR/Cas9 gene-editing technology, derived from the adaptive immune mechanisms of bacteria, has demonstrated remarkable advantages in fields such as gene function research and the treatment of genetic diseases due to its simplicity in design, precise targeting, and ease of use. Despite challenges such as off-target effects and cytotoxicity, effective spatiotemporal control strategies have been achieved for the CRISPR/Cas9 system through precise regulation of Cas9 protein activity as well as engineering of guide RNAs (gRNAs). This review provides a comprehensive analysis of the core components and functional mechanisms underlying the CRISPR/Cas9 system, highlights recent advancements in spatiotemporal control strategies, and discusses future directions for development.

View Article and Find Full Text PDF

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Integrating UPLC-MS/MS Bioinformatics and In Vivo Experiments Validation to Elucidate the Mechanism of Wenzi Jiedu Decoction in Suppressing Colorectal Cancer.

Phytochem Anal

December 2024

Institute of Oncology, the First Clinical Medical College, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Objectives: We used ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), bioinformatics, and in vivo experiments to study the anti-colorectal cancer (CRC) effects of Wenzi Jiedu Decoction (WJD).

Methods: Detected the main components of WJD by UPLC-MS/MS. Obtained WJD targets and CRC targets through the open source database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!