Effects of C/Mn Ratios on the Sorption and Oxidative Degradation of Small Organic Molecules on Mn-Oxides.

Environ Sci Technol

Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.

Published: January 2023

Manganese (Mn) oxides have a high surface area and redox potential that facilitate sorption and/or oxidation of organic carbon (OC), but their role in regulating soil C storage is relatively unexplored. Small OC compounds with distinct structures were reacted with Mn(III/IV)-oxides to investigate the effects of OC/Mn molar ratios on Mn-OC interaction mechanisms. Dissolved and solid-phase OC and Mn were measured to quantify the OC sorption to and/or the redox reaction with Mn-oxides. Mineral transformation was evaluated using X-ray diffraction and X-ray absorption spectroscopy. Higher OC/Mn ratios resulted in higher sorption and/or redox transformation; however, interaction mechanisms differed at low or high OC/Mn ratios for some OC. Citrate, pyruvate, ascorbate, and catechol induced Mn-oxide dissolution. The average oxidation state of Mn in the solid phase did not change during the reaction with citrate, suggesting ligand-promoted mineral dissolution, but decreased significantly during reactions with the other compounds, suggesting reductive dissolution mechanisms. Phthalate primarily sorbed on Mn-oxides with no detectable formation of redox products. Mn-OC interactions led primarily to C loss through OC oxidation into inorganic C, except phthalate, which was predominantly immobilized in the solid phase. Together, these results provided detailed fundamental insights into reactions happening at organo-mineral interfaces in soils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c03633DOI Listing

Publication Analysis

Top Keywords

sorption and/or
12
interaction mechanisms
8
and/or redox
8
oc/mn ratios
8
solid phase
8
effects c/mn
4
ratios
4
c/mn ratios
4
sorption
4
ratios sorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!