Electrochemical fluorination manufacture of perfluorooctane sulfonic acid (PFOS), one of the most studied per- and polyfluoroalkyl substances, produces mixtures of linear and branched isomers, but little is known about human exposure to linear or branched PFOS isomers. We examined determinants affecting isomer-specific patterns of PFOS in serum in two adult populations in the United States, the National Health and Nutrition Examination Survey (NHANES) and the Study of Women's Health Across the Nation Multi-Pollutant Study (SWAN-MPS). After adjusting for demographic variables, fish consumption (in both populations), a glomerular filtration rate above 90 mL/min/1.73 m (observed in NHANES; not tested in SWAN-MPS), premenopausal status (only observed in SWAN-MPS), and less consumption of processed food (observed in SWAN-MPS; not tested in NHANES) were associated with a higher proportion of linear PFOS. Non-Hispanic Black and Asian participants were likely to have a higher proportion of linear PFOS than non-Hispanic White participants in both populations. Our findings suggest that isomer-specific patterns of PFOS serum concentrations in humans vary depending on population characteristics that affect PFOS exposure and excretion. Consideration of specific PFOS isomers in future human biomonitoring and epidemiologic studies can provide useful insight to better understand PFOS exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103141 | PMC |
http://dx.doi.org/10.1021/acs.est.2c04501 | DOI Listing |
BMC Med Res Methodol
January 2025
Department of Ophthalmology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1, Singil-ro, Yeongdeungpo-gu, Seoul, 07441, South Korea.
Background: The US National Health and Nutrition Examination Survey (NHANES) dataset does not include a specific question or laboratory test to confirm a history of cancer diagnosis. However, if straightforward variables for cancer history are introduced, US NHANES could be effectively utilized in future cancer epidemiology studies. To address this gap, the authors developed a cancer patient database from the US NHANES datasets by employing multiple R programming codes.
View Article and Find Full Text PDFJ Contam Hydrol
January 2025
Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, USA. Electronic address:
Soil samples collected from an aqueous film-forming foam (AFFF)-impacted sandy soil formation at two depth intervals above the water table were used in bench-scale column experiments to evaluate the release of poly- and perfluoroalkyl substances (PFASs) under different degrees of water saturation. Artificial rainwater was applied to the soils under constant and variably saturated conditions. Results from constant saturation experiments suggest that retention of PFAS mass at air-water interfaces was evident in the deep soil (f < 0.
View Article and Find Full Text PDFToxicol Ind Health
January 2025
Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, China.
Perfluoroalkyl chemicals are one of the most stable substances in industry and have become ubiquitous contaminants owing to their persistence in the environment. This study enrolled 1,953 participants aged ≥40 years old using data from the National Health and Nutrition Examination Survey (NHANES). We selected four perfluoroalkyl chemicals with a detection frequency of more than 80%, including perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESP), Beijing, China; Key Laboratory for Emerging Organic Contaminants Control (BKLEOC), Beijing, China; Laboratory for Environmental Frontier Technologies (BLEFT), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:
Environ Res
January 2025
Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA. Electronic address:
Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals" because of their persistence in the environment, have been used in many commercial applications since the 1940s. Of late, the detection of PFAS in drinking water throughout the United States has raised public and scientific concerns. To understand PFAS exposure trends in the general U.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!