Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To evaluate the effect of short curing time using a high-radiant emittance light on polymerization shrinkage vectors in different consistency bulk-fill composites (BFRCs) using micro-computed tomography.
Methods And Materials: Radiopaque zirconia fillers were homogeneously incorporated and functioned as radiopaque tracers into two regular-paste: TBFill (Tetric EvoCeram Bulk Fill) and TPFill (Tetric PowerFill), and two flowable (n=6): TBFlow (Tetric EvoFlow Bulk Fill) and TPFlow (Tetric PowerFlow) resin composites. Class I cavities (4 mm depth × 4 mm length × 4 mm width) were 3D-printed and filled in a single increment: TBFill and TBFlow were light-activated using a Bluephase Style 20i (10 seconds in high-mode); TPFill and TPFlow were light-activated using a Bluephase PowerCure (three seconds). The same adhesive system (Adhese Universal) was used for all groups. Microcomputed tomography scans were obtained before and after light-activation. Filler particle movement was identified by polymerization shrinkage vectors at five depths (from 0-4 mm): top, top-middle, middle, middle-bottom and bottom.
Results: TPFlow showed the lowest total vector displacement, followed by TBFlow, TBFill and TPFill, significantly different among each other (p<0.05). Generally, BFRCs showed decreased vector displacement with increased depth, and higher displacement at the top-surface (p<0.05). Qualitative analysis showed a similar pattern of vector magnitude and displacement for groups TBFill and TPFill, with displacement vectors on occlusal (top) surfaces toward the center of the restoration from the top to middle areas, and relatively limited displacement at the bottom. TBFlow and TPFlow showed more displacement on the occlusal (top).
Conclusions: Short curing time with high-radiant emittance on fast-curing BFRCs was shown to be a feasible option in terms of vector displacement. Flowable BFRCs presented lower vector displacement than their regular-viscosity versions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2341/20-167-L | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!