Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Stimuli-responsive nanocapsules, which can respond to various environmental stimuli and release their encapsulated payload on demand, have attracted wide interest in different fields in recent years. In this work, a novel kind of polypyrrole (PPy) nanocapsules is fabricated and loaded with zinc salt corrosion inhibitors. The synthesized PPy nanocapsules respond to two different external stimuli (pH- and redox-responsive) and can control the release of their encapsulated corrosion inhibitors. The nanocapsules can detect the micro-environmental pH or surface-potential changes associated with the corrosion initiation of the metal substrate. When introduced into a protective epoxy coating, the fabricated PPy nanocapsules inhibit the anodic and cathodic corrosion reactions. The superior corrosion resistance and active corrosion protection effects of the epoxy-PPy-Zn coatings are further demonstrated via electrochemical and long-term immersion tests. The low-frequency impedance, coating resistance, and oxide film resistance increase after about 400 h of exposure in a 3.5 wt % NaCl solution, reflecting the enhanced corrosion protection properties and excellent repairing performance of the coating. Furthermore, the epoxy-PPy-Zn coating can avoid the pitting corrosion of 304 stainless steel. Overall, we have fabricated double stimuli-responsive PPy nanocapsules via a simple and effective strategy and incorporated them into a corrosion-resistant epoxy coating for protecting Fe-based metal substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c17466 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!