Surface enhanced resonance Raman scattering (SERRS) was observed from structurally related drug-induced rat liver cytochromes P-450 adsorbed on a silver colloid. Careful control of pH and the sequence of addition of components to the so1 is required to prevent protein denaturation at the surface due to conversion to P-450's biologically inactive form P-420 or haem loss. A low-spin P-450 (PB3a), a mixed low- and high-spin P-450 (PB3b) and a predominantly high-spin P-450 (MC1a) were investigated. Spectra recorded in the 1300-1700 cm-1 frequency region, containing the oxidation state marker v4 at 1375 cm-1 (Fe3+) and spin state markers v10 (1625 cm-1, high-spin; 1633 cm-1, low-spin) and v19 (1575 cm-1, high-spin; 1585 cm-1, low-spin) were used to differentiate between the spin states of the various forms of cytochrome P-450. As well as the established spin state marker bands, the intensity of a band at 1400 cm-1 appeared to depend on the high-spin content. Thus, with this method SERRS from silver colloids can be used to determine spin states of related cytochromes P-450 in dilute solution (10(-8)M) and may be of value in studies of protein-substrate interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0014-5793(87)80203-xDOI Listing

Publication Analysis

Top Keywords

spin state
12
cytochromes p-450
12
surface enhanced
8
enhanced resonance
8
resonance raman
8
raman scattering
8
rat liver
8
high-spin p-450
8
state marker
8
cm-1 high-spin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!