Intestinal lipoproteins, especially triglyceride-rich chylomicrons, are a major driver of metabolism, inflammation, and cardiovascular diseases. However, isolating intestinal lipoproteins is very difficult in vivo because they are first secreted from the small intestine into the mesenteric lymphatics. Chylomicron-containing lymph then empties into the subclavian vein from the thoracic duct to deliver components of the meal to the heart, lungs, and, ultimately, whole-body circulation. Isolating naïve chylomicrons is impossible from blood since chylomicron triglyceride undergoes hydrolysis immediately upon interaction with lipoprotein lipase and other lipoprotein receptors in circulation. Therefore, the original 2-day lymph fistula procedure, described by Bollman et al. in rats, has historically been used to isolate fresh mesenteric lymph before its entry into the thoracic vein. That protocol has been improved upon and professionalized by the laboratory of Patrick Tso for the last 45 years, allowing for the analysis of these critical lipoproteins and secretions from the gut. The Tso lymph fistula procedure has now been updated and is presented here visually for the first time. This revised procedure is a single-day surgical technique for installing a duodenal feeding tube, cannulating the mesenteric lymph duct, and collecting lymph after a meal in conscious mice. The major benefits of these new techniques include the ability to reproducibly collect lymph from mice (which harnesses the power of genetic mouse models); the reduced anesthesia time for mice during the implantation of the duodenal infusion tube and the lymph cannula; the ability to continuously sample lymph throughout the feeding and post-prandial period; the ability to quantitatively measure hormones and cytokines before their dilution and enzymatic hydrolysis in blood; and the ability to collect large quantities of lymph for isolating intestinal lipoproteins. This technique is a powerful tool for directly and quantitatively measuring dietary nutrient absorption, intestinal lipoprotein synthesis, and chylomicron secretion.

Download full-text PDF

Source
http://dx.doi.org/10.3791/64338DOI Listing

Publication Analysis

Top Keywords

mesenteric lymph
12
intestinal lipoproteins
12
lymph
11
lymph mice
8
chylomicron secretion
8
isolating intestinal
8
lymph fistula
8
fistula procedure
8
isolation flowing
4
mesenteric
4

Similar Publications

tumour specific surgery in colon cancer is gaining popularity among colorectal surgeons. Many advocate adapting surgical technique based on preoperative CT staging as not all patients require complete mesocolic excision (CME) and D3 lymphadenectomy. We aimed to assess the sensitivity and specificity of preoperative CT scans in nodal staging and analyse whether inadequate CT staging could have influenced local recurrences.

View Article and Find Full Text PDF

The gut microbiota influences the reactivity of the immune system, and has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses.

View Article and Find Full Text PDF

Enhancing leuprolide penetration through enterocytes via the ER-Golgi pathway using lipophilic complexation.

Eur J Pharm Biopharm

December 2024

School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China. Electronic address:

Oral delivery of peptide drugs remains one of the most formidable challenges in the frontier of pharmaceutical research. Peptide drugs typically suffer from exceptionally low oral bioavailability, primarily attributed to rigorous enzymatic degradation within the gastrointestinal (GI) tract, limited ability to traverse the enterocyte barrier, and significant first-pass hepatic metabolism. Absorption of peptide drugs via the lymphatic route could potentially bypass intracellular lysosome degradation and hepatic first-pass metabolism.

View Article and Find Full Text PDF

To investigate the regulatory mechanisms and pathways of visfatin under immune stress injury in weaned piglets, we established a lipopolysaccharide-induced immune stress model in weaned piglets to study how visfatin affects peripheral immune organs and intestinal function. The results revealed that visfatin improved the inflammatory response in immune-stressed weaned piglets by reducing the levels of pro-inflammatory cytokines interleukin-1β, interleukin-6 and monocyte chemoattractant protein-1, as well as decreasing the neutrophil/lymphocyte ratio. Visfatin ameliorated oxidative stress in piglets by promoting the expression of superoxide dismutase and glutathione peroxidase.

View Article and Find Full Text PDF

(CM), a well-known parasitic fungus that grows on the larvae of , has a variety of pharmacological activities. However, little is known about its safe dosage for animals, including pigs. To explore its effect on intestinal health and evaluate its safe dosage, 30 weaned pigs were randomly allotted to five groups and fed with a basal diet supplemented with different doses of CM for 42 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!