AI Article Synopsis

  • A study on 34 adult lymphoma patients undergoing their first chemotherapy (CHT) treatment revealed that most experienced significant telomere shortening during and after their treatment.
  • On average, patients lost about 673 base pairs (bp) of telomeres by the sixth cycle, with the most significant loss occurring by the third cycle.
  • The results indicated that baseline telomere length and gender are key factors influencing how telomeres respond to chemotherapy, with younger women showing less significant telomere loss compared to other groups.

Article Abstract

Although chemotherapy (CHT) exposure is an established cause of telomere attrition, determinants of telomere length (TL) dynamics after chemotherapy are poorly defined. In this study, we analyzed granulocyte telomere dynamics in 34 adult lymphoma patients undergoing first-line CHT. TL was measured by southern blot at each CHT cycle and after 1 year from CHT completion. Median age was 59 yrs (range 22-77). Median number of CHT cycles was 6 (range 3-6). The majority of patients (79%, n = 27) experienced TL shortening following CHT exposure. Mean telomere loss was 673 base pairs (bp) by cycle 6. Telomere shortening was an early event as 87% of the total telomere loss (mean 586 bp) occurred by the end of cycle 3, with no significant recovery after 1 year. A significant correlation was observed between baseline TL and total or fractional telomere loss (p < 0.001), with telomere shortening by cycle 3 observed predominantly in male patients with long telomeres at pre-treatment evaluation. Stratifying the analysis by gender and age only young women (<51 years of age) did not show significant telomere shortening following chemotherapy exposure. These findings indicate that gender and baseline TL are major determinants of TL dynamics following chemotherapy exposure in lymphoma patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hon.3118DOI Listing

Publication Analysis

Top Keywords

telomere loss
16
telomere
8
determinants telomere
8
lymphoma patients
8
cht exposure
8
cht
6
long telomeres
4
telomeres baseline
4
baseline male
4
male sex
4

Similar Publications

Revealing the secrets of Blue Zones.

Front Pharmacol

December 2024

Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Türkiye.

Aging is influenced by cellular senescence mechanisms that are associated with oxidative stress. Oxidative stress is the imbalance between antioxidants and free radicals. This imbalance affects enzyme activities and causes mitochondrial dysfunction.

View Article and Find Full Text PDF

Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, relies on retrotransposable elements-specifically , , and (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms.

View Article and Find Full Text PDF

Telomerase-Mediated Anti-Ageing Interventions.

Subcell Biochem

December 2024

School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.

The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans.

View Article and Find Full Text PDF

Approximately 10-15% of human cancers are telomerase-negative and maintain their telomeres through a recombination-based process known as the alternative lengthening of telomeres (ALT) pathway. Loss of the alpha-thalassemia/mental retardation, X-linked (ATRX) chromatin remodeller is a common event in ALT-positive cancers, but is generally insufficient to drive ALT induction in isolation. We previously demonstrated that ATRX binds to the MRN complex, which is also known to be important in the ALT pathway, but the molecular basis of this interaction remained elusive.

View Article and Find Full Text PDF

TRF2 is an essential and conserved double-strand telomere binding protein that stabilizes chromosome ends by suppressing DNA damage response and aberrant DNA repair. Herein we investigated the mechanisms and functions of the Trf2 ortholog in the basidiomycete fungus Ustilago maydis, which manifests strong resemblances to metazoans with regards to the telomere and DNA repair machinery. We showed that UmTrf2 binds to Blm in vitro and inhibits Blm-mediated unwinding of telomeric DNA substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!