Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9728462 | PMC |
http://dx.doi.org/10.1515/nanoph-2021-0449 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!