A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Overfactoring in rating scale data: A comparison between factor analysis and item response theory. | LitMetric

Educational and psychological measurement is typically based on dichotomous variables or rating scales comprising a few ordered categories. When the mean of the observed responses approaches the upper or the lower bound of the scale, the distribution of the data becomes skewed and, if a categorical factor model holds in the population, the Pearson correlation between variables is attenuated. The consequence of this correlation attenuation is that the traditional linear factor model renders an excessive number of factors. This article presents the results of a simulation study investigating the problem of overfactoring and some solutions. We compare five widely known approaches: (1) The maximum-likelihood factor analysis (FA) model for normal data, (2) the categorical factor analysis (FAC) model based on polychoric correlations and maximum likelihood (ML) estimation, (3) the FAC model estimated using a weighted least squares algorithm, (4) the mean corrected chi-square statistic by Satorra-Bentler to handle the lack of normality, and (5) the Samejima's graded response model (GRM) from item response theory (IRT). Likelihood-ratio chi-square, parallel analysis (PA), and categorical parallel analysis (CPA) are used as goodness-of-fit criteria to estimate the number of factors in the simulation study. Our results indicate that the maximum-likelihood estimation led to overfactoring in the presence of skewed variables both for the linear and categorical factor model. The Satorra-Bentler and GRM constitute the most reliable alternatives to estimate the number of factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9750161PMC
http://dx.doi.org/10.3389/fpsyg.2022.982137DOI Listing

Publication Analysis

Top Keywords

factor analysis
12
categorical factor
12
factor model
12
number factors
12
item response
8
response theory
8
simulation study
8
fac model
8
parallel analysis
8
estimate number
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!