In recent years, many studies have found that vitamin K is beneficial to wound healing. However, some research results seem to be in conflict. The purpose of this study was to evaluate the effect of vitamin K on wound healing. We systematically and comprehensively searched the PubMed, Web of Science, Embase, Cochrane library, China National Knowledge Infrastructure (CNKI), VIP and Wanfang eletronic databases. We applied revman5.3 software to calculate the weighted mean difference (WMD) of 95% confidence interval (CI) of animal and cell groups to evaluate the effect of vitamin K on wound healing. Two researchers independently selected studies and used the Cochrane Collaboration tool to assess the risk of bias in the included studies. The overall quality of evidence was assessed using the Recommendation, Assessment, Development and Evaluation (GRADE) working group approch. Among the 1081 articles searched, 6 articles (16 studies in total) met the inclusion criteria. The results of quantitative analysis showed that vitamin K was beneficial to increase the wound healing rate in animal models [rat model: WMD = 27.45 (95% CI: 13.46, 41.44); = 0.0001], but the opposite result was obtained in cell experiments [WMD = -33.84 (95% CI: -56.90, -10.79); = 0.004]. This meta-analysis hits that vitamin K could affect the process of wound healing, especially in animal models. While we could not know the clear role at present, which requires larger scale research. In addition, the concentration and safe dose of vitamin K also deserve further study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9755209 | PMC |
http://dx.doi.org/10.3389/fphar.2022.1063349 | DOI Listing |
Cancer Cell Int
January 2025
Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
Background: Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients.
Methods: We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database.
Int J Surg Case Rep
January 2025
Urology Department, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Italy.
Introduction: Hyperthermic intraperitoneal chemotherapy (HIPEC) is a current treatment option for peritoneal carcinosis (PC) after cytoreductive surgery (CRS). Genital skin alterations are rare complications reported variously after HIPEC using Mitomycin-C.
Presentation Of Case: A 42-year-old man with a diagnosis of stage IV colorectal cancer underwent CRS and HIPEC using mitomycin-C.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Int J Biol Macromol
January 2025
School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:
Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Academy of Integrated Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China. Electronic address:
Dihydrotanshinone I (DHT) is an active ingredient derived from Salvia miltiorrhiza. Previous studies have demonstrated that DHT can improve cardiac function in rats with myocardial ischemia-reperfusion injury (IR). However, the mechanism by which DHT improves myocardial injury in rats still requires further research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!