Introduction: Sleep disorders are common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain poorly understood. Since the lateral hypothalamic (LH) and the perifornical orexinergic (ORX) and melanin-concentrating hormone (MCH) neurons are known to play opposing roles in the regulation of sleep and arousal, dysregulation of ORX and MCH neurons might contribute to the disturbance of sleep-wakefulness following epileptic seizures.

Methods: To test this hypothesis, rats were treated with lithium chloride and pilocarpine to induce status epilepticus (SE). Electroencephalogram (EEG) and electromyograph (EMG) were recorded for analysis of sleep-wake states before and 24 h after SE. Double-labeling immunohistochemistry of c-Fos and ORX or MCH was performed on brain sections from the epileptic and control rats. In addition, anterograde and retrograde tracers in combination with c-Fos immunohistochemistry were used to analyze the possible activation of the amygdala to ORX neural pathways following seizures.

Results: It was found that epileptic rats displayed prolonged wake phase and decreased non-rapid eye movement (NREM) and rapid eye movement (REM) phase compared to the control rats. Prominent neuronal activation was observed in the amygdala and the hypothalamus following seizures. Interestingly, in the LH and the perifornical nucleus, ORX but not MCH neurons were significantly activated (c-Fos). Neural tracing showed that seizure-activated (c-Fos) ORX neurons were closely contacted by axon terminals originating from neurons in the medial amygdala.

Discussion: These findings suggest that the spread of epileptic activity from amygdala to the hypothalamus causes selective activation of the wake-promoting ORX neurons but not sleep-promoting MCH neurons, which might contribute to the disturbance of sleep-wakefulness in TLE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9751402PMC
http://dx.doi.org/10.3389/fnins.2022.1056706DOI Listing

Publication Analysis

Top Keywords

mch neurons
16
orx mch
12
selective activation
8
melanin-concentrating hormone
8
neurons
8
neurons contribute
8
contribute disturbance
8
disturbance sleep-wakefulness
8
c-fos orx
8
control rats
8

Similar Publications

Objective: The ventral tegmental area (VTA), a pivotal hub in the brain's reward circuitry, receives inputs from the lateral hypothalamic area (LHA). However, it remains unclear whether melanin-concentrating hormone (MCH) and orexin-A (OX-A) neurons in the LHA exert individual or cooperative influence on palatable food consumption in the VTA. This study aims to investigate the modulatory role of MCH and OX-A in hedonic feeding within the VTA of high-fat diet (HFD) mice.

View Article and Find Full Text PDF

Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit.

View Article and Find Full Text PDF

Effects of Paradoxical Sleep Deprivation on MCH and Hypocretin Systems.

Sleep Sci

December 2024

Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.

Melanin-concentrating hormone (MCH) and hypocretins (Hcrt) 1 and 2 are neuropeptides synthesized in the lateral hypothalamic area by neurons that are critical in the regulation of sleep and wakefulness. Their receptors are located in the same cerebral regions, including the frontal cortex and hippocampus. The present study aimed to assess whether 96 hours of paradoxical sleep deprivation alters the functioning of the MCH and hypocretin systems.

View Article and Find Full Text PDF
Article Synopsis
  • Gliomas are the most common malignant brain tumors, often leading to serious neurological issues and high mortality, yet they usually do not spread outside the brain, suggesting they depend on the brain's unique environment.* -
  • This study used a special rabies virus tracing technique in a mouse model to identify neurons that connect with glioma cells, revealing various brain regions involved in glioma innervation.* -
  • Molecular profiling showed that these connecting neurons (GINs) predominantly use glutamate and GABA neurotransmitters, and their electrophysiological properties differ from typical neurons, indicating a specific neural interaction that could influence glioma behavior.*
View Article and Find Full Text PDF

Neuropeptidergic input from the lateral hypothalamus to the suprachiasmatic nucleus alters the circadian period in mice.

J Neurosci

December 2024

Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan

Article Synopsis
  • * Neurons in the lateral hypothalamus, specifically those producing orexin and melanin-concentrating hormone (MCH), play a crucial role in regulating the circadian period of the SCN.
  • * Research shows that these peptides can shorten circadian rhythms in the SCN, and their absence leads to prolonged behavioral rhythms in constant darkness, highlighting their importance in circadian modulation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!