Purpose: No established biomarkers currently exist for therapeutic efficacy and durability of anti-VEGF therapy in neovascular age-related macular degeneration (nAMD). This study evaluated radiomic-based quantitative OCT biomarkers that may be predictive of anti-VEGF treatment response and durability.
Design: Assessment of baseline biomarkers using machine learning (ML) classifiers to predict tolerance to anti-VEGF therapy.
Participants: Eighty-one participants with treatment-naïve nAMD from the OSPREY study, including 15 super responders (patients who achieved and maintained retinal fluid resolution) and 66 non-super responders (patients who did not achieve or maintain retinal fluid resolution).
Methods: A total of 962 texture-based radiomic features were extracted from fluid, subretinal hyperreflective material (SHRM), and different retinal tissue compartments of OCT scans. The top 8 features, chosen by the minimum redundancy maximum relevance feature selection method, were evaluated using 4 ML classifiers in a cross-validated approach to distinguish between the 2 patient groups. Longitudinal assessment of changes in different texture-based radiomic descriptors (delta-texture features) between baseline and month 3 also was performed to evaluate their association with treatment response. Additionally, 8 baseline clinical parameters and a combination of baseline OCT, delta-texture features, and the clinical parameters were evaluated in a cross-validated approach in terms of association with therapeutic response.
Main Outcome Measures: The cross-validated area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to validate the classifier performance.
Results: The cross-validated AUC by the quadratic discriminant analysis classifier was 0.75 ± 0.09 using texture-based baseline OCT features. The delta-texture features within different OCT compartments between baseline and month 3 yielded an AUC of 0.78 ± 0.08. The baseline clinical parameters sub-retinal pigment epithelium volume and intraretinal fluid volume yielded an AUC of 0.62 ± 0.07. When all the baseline, delta, and clinical features were combined, a statistically significant improvement in the classifier performance (AUC, 0.81 ± 0.07) was obtained.
Conclusions: Radiomic-based quantitative assessment of OCT images was shown to distinguish between super responders and non-super responders to anti-VEGF therapy in nAMD. The baseline fluid and SHRM delta-texture features were found to be most discriminating across groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9754979 | PMC |
http://dx.doi.org/10.1016/j.xops.2022.100171 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!