Introduction Pollution of air in urban cities across the world has been steadily increasing in recent years. An increasing trend in particulate matter, PM , is a threat because it can lead to uncontrollable consequences like worsening of asthma and cardiovascular disease. The metric used to measure air quality is the air pollutant index (API). In Malaysia, machine learning (ML) techniques for PM have received less attention as the concentration is on predicting other air pollutants. To fill the research gap, this study focuses on correctly predicting PM concentrations in the smart cities of Malaysia by comparing supervised ML techniques, which helps to mitigate its adverse effects. Methods In this paper, ML models for forecasting PM concentrations were investigated on Malaysian air quality data sets from 2017 to 2018. The dataset was preprocessed by data cleaning and a normalization process. Next, it was reduced into an informative dataset with location and time factors in the feature extraction process. The dataset was fed into three supervised ML classifiers, which include random forest (RF), artificial neural network (ANN) and long short-term memory (LSTM). Finally, their output was evaluated using the confusion matrix and compared to identify the best model for the accurate prediction of PM . Results Overall, the experimental result shows an accuracy of 97.7% was obtained by the RF model in comparison with the accuracy of ANN (61.14%) and LSTM (61.77%) in predicting PM . Discussion RF performed well when compared with ANN and LSTM for the given data with minimum features. RF was able to reach good accuracy as the model learns from the random samples by using decision tree with the maximum vote on the predictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9723408 | PMC |
http://dx.doi.org/10.12688/f1000research.73166.1 | DOI Listing |
Expert Rev Med Devices
January 2025
Division of Gastroenterology, P.D Hinduja Hospital, Mumbai, India.
Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).
View Article and Find Full Text PDFInflammation
January 2025
Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!