This study proposed a modified three-stage auto-cascade refrigeration cycle (MTARC) operating with environmentally benign zeotropic mixture of R1234yf/R170/R14 at the refrigeration temperature level of - 80 °C. Compared with the conventional three-stage auto-cascade refrigeration cycle (CTARC), MTARC incorporates an additional pressure regulator between the condenser and separator to realize phase separation at a lower pressure and temperature. A comprehensive evaluation of energy and exergy performance of the two cycles was conducted theoretically. Under a typical working condition, the cooling capacity, COP and exergy efficiency of the MTARC are improved by 15.85%, 11.69% and 7.65% in comparison with the CTARC, respectively. In addition, a lower evaporating temperature was also obtained by the MTARC under the same operating condition. When the intermediate pressure drops from 2 to 1 MPa, the cooling capacity, COP and exergy efficiency are improved by 35.43%, 25.25% and 16.74%, respectively, for the MTARC, meanwhile the compressor outlet temperature increases 19.93 °C from 92.27 to 112.20 °C. Therefore, the selection of the intermediate pressure should be comprehensively considered to ensure a desirable cycle performance and a proper working condition for the compressor. The proposed modified cycle offers new pathways for designing innovative cryogenic refrigeration systems, thereby potentially improving the energy economy in a myriad of modern energy applications for sustainability concerns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9734607PMC
http://dx.doi.org/10.1007/s10973-022-11721-wDOI Listing

Publication Analysis

Top Keywords

three-stage auto-cascade
12
auto-cascade refrigeration
12
refrigeration cycle
12
energy exergy
8
modified three-stage
8
proposed modified
8
mtarc operating
8
working condition
8
cooling capacity
8
capacity cop
8

Similar Publications

This study proposed a modified three-stage auto-cascade refrigeration cycle (MTARC) operating with environmentally benign zeotropic mixture of R1234yf/R170/R14 at the refrigeration temperature level of - 80 °C. Compared with the conventional three-stage auto-cascade refrigeration cycle (CTARC), MTARC incorporates an additional pressure regulator between the condenser and separator to realize phase separation at a lower pressure and temperature. A comprehensive evaluation of energy and exergy performance of the two cycles was conducted theoretically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!