AI Article Synopsis

  • The brain and skeletal muscle play crucial roles in regulating metabolism and movement, which are essential for an organism's survival.
  • Recent advancements in technology and machine learning enable a new field of study focused on understanding how these systems work together at a cellular level.
  • A deeper comprehension of the brain and skeletal muscle's coordinated functions could lead to innovative methods for disease detection and therapy.

Article Abstract

Metabolism and movement, among the critical determinants in the survival and success of an organism, are tightly regulated by the brain and skeletal muscle. At the cellular level, mitochondria -that powers life, and myosin - the molecular motor of the cell, have both evolved to serve this purpose. Although independently, the skeletal muscle and brain have been intensively investigated for over a century, their coordinated involvement in metabolism and movement remains poorly understood. Therefore, a fundamental understanding of the coordinated involvement of the brain and skeletal muscle in metabolism and movement holds great promise in providing a window to a wide range of life processes and in the development of tools and approaches in disease detection and therapy. Recent developments in new tools, technologies and approaches, and advances in computing power and machine learning, provides for the first time the opportunity to establish a new field of study, the 'Science and Engineering of Metabolism and Movement'. This new field of study could provide substantial new insights and breakthrough into how metabolism and movement is governed at the systems level in an organism. The design and approach to accomplish this objective is briefly discussed in this article.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9748637PMC
http://dx.doi.org/10.15190/d.2022.3DOI Listing

Publication Analysis

Top Keywords

metabolism movement
20
skeletal muscle
12
brain skeletal
8
coordinated involvement
8
field study
8
metabolism
6
movement
5
understanding brain-skeletal
4
muscle
4
brain-skeletal muscle
4

Similar Publications

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.

View Article and Find Full Text PDF

Objective To investigate the effect of basic helix-loop-helix family member E40 (BHLHE40) on the invasion and migration of osteosarcoma (OS) cells, and to explore the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the biological behavior of OS mediated by BHLHE40, providing a scientific basis for targeted therapy of OS. Methods On the basis of clinical OS samples and OS cell lines, the expression differences of BHLHE40 between OS and adjacent tissues, as well as those between OS cells and normal osteoblast cell lines, were analyzed. BHLHE40 knockdown OS cells were obtained through shRNA transfection.

View Article and Find Full Text PDF

Objective To explore the clinical and immunological significance of CCDC97 in hepatocellular carcinoma (HCC). Methods Clinical data and RNA sequencing results from HCC patients were retrieved from TCGA and ICGC databases. Bioinformatics analysis and in vitro experiments were performed to investigate the role of CCDC97 in HCC.

View Article and Find Full Text PDF

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!