A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design. | LitMetric

There are two broad modeling paradigms in scientific applications: forward and inverse. While forward modeling estimates the observations based on known causes, inverse modeling attempts to infer the causes given the observations. Inverse problems are usually more critical as well as difficult in scientific applications as they seek to explore the causes that cannot be directly observed. Inverse problems are used extensively in various scientific fields, such as geophysics, health care and materials science. Exploring the relationships from properties to microstructures is one of the inverse problems in material science. It is challenging to solve the microstructure discovery inverse problem, because it usually needs to learn a one-to-many nonlinear mapping. Given a target property, there are multiple different microstructures that exhibit the target property, and their discovery also requires significant computing time. Further, microstructure discovery becomes even more difficult because the dimension of properties (input) is much lower than that of microstructures (output). In this work, we propose a framework consisting of generative adversarial networks and mixture density networks for inverse modeling of structure-property linkages in materials, i.e., microstructure discovery for a given property. The results demonstrate that compared to baseline methods, the proposed framework can overcome the above-mentioned challenges and discover multiple promising solutions in an efficient manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744696PMC
http://dx.doi.org/10.1007/s40192-022-00285-0DOI Listing

Publication Analysis

Top Keywords

inverse modeling
12
inverse problems
12
microstructure discovery
12
generative adversarial
8
adversarial networks
8
networks mixture
8
mixture density
8
inverse
8
scientific applications
8
target property
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!