Thermal runaway is a major safety concern in the applications of Li-ion batteries, especially in the electric vehicle (EV) market. A key component to mitigate this risk is the separator membrane, a porous polymer film that prevents physical contact between the electrodes. Traditional polyolefin-based separators display significant thermal shrinkage (TS) above 100 °C, which increases the risk of battery failure; hence, suppressing the TS up to 180 °C is critical to enhancing the cell's safety. In this article, we deposited thin-film coatings (less than 10 nm) of aluminum oxide by atomic layer deposition (ALD) on three different types of separator membranes. The deposition conditions and the plasma pretreatment were optimized to decrease the number of ALD cycles necessary to suppress TS without hindering the battery performance for all of the studied separators. A dependency on the separator composition and porosity was found. After 100 ALD cycles, the thermal shrinkage of a 15 μm thick polyethylene membrane with 50% porosity was measured to be below 1% at 180 °C, with ionic conductivity >1 mS/cm. Full battery cycling with NMC532 cathodes demonstrates no hindrance to the battery's rate capability or the capacity retention rate compared to that of bare membranes during the first 100 cycles. These results display the potential of separators functionalized by ALD to enhance battery safety and improve battery performance without increasing the separator thickness and hence preserving excellent volumetric energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753167PMC
http://dx.doi.org/10.1021/acsomega.2c06318DOI Listing

Publication Analysis

Top Keywords

thermal shrinkage
12
aluminum oxide
8
separator membranes
8
180 °c
8
ald cycles
8
battery performance
8
battery
6
separator
5
ultrathin ald
4
ald aluminum
4

Similar Publications

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Thermal Enhanced Near-Infrared Upconversion Luminescence in YMoO:Yb/Nd with Uniaxial Negative Thermal Expansion.

Inorg Chem

December 2024

School of Chemistry and Chemical Engineering/Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, P. R. China.

Thermal quenching (TQ) of luminescence presents a significant barrier to the effective use of optical thermometers in high-temperature applications. Herein, we report a novel uniaxial negative thermal expansion (NTE) phosphor, YMoO:Yb,Nd, synthesized by a solid-state reaction. Under 980 nm laser excitation, it exhibits excellent thermally enhanced near-infrared (NIR) upconversion luminescence (UCL) performance.

View Article and Find Full Text PDF

Air-Drying for Rapid Manufacture of Flexible Aramid Nanofiber Aerogel Fibers with Robust Mechanical Properties and Thermal Insulation in Harsh Environments.

Small

December 2024

State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.

Aerogel fibers uniting characteristics of both aerogels (lightweight and porosity) and fibers (flexibility and wearability) exhibit a great potential for the production of the next generation of thermal protection textiles; still, the complex drying procedures and mechanical brittleness remain the main obstacles toward further exploitation. Herein, flexible and robust aramid nanofiber aerogel fibers (ANAFs) are scalably prepared by continuous wet-spinning coupled with fast air-drying. This synthesis involves calcium ions (Ca⁺) cross-linking and solvent displacement by low surface tension solvents, to enhance skeleton strength and reduce the capillary force during evaporation, respectively, thus minimizing shrinkage to 29.

View Article and Find Full Text PDF

Background: At present, the main clinical application of local ablation therapy, such as radiofrequency ablation (RFA), is to heat the tissue to a certain temperature. However, high temperature will cause thermal damage. Irreversible electroporation (IRE) is a novel minimally invasive local ablation technology for tumors.

View Article and Find Full Text PDF

Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator.

Langmuir

December 2024

Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha No. 10, Bandung, West Java 40132, Indonesia.

Commercial battery separators are made of polyolefin polymers due to their desired mechanical strength and chemical stability. However, these materials are not biodegradable and are challenging to recycle. Considering the environmental issues from polyolefins, biodegradable polymers can be developed as separators to reduce the potential waste from polyolefin separators.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!