Hexaferrites have long been the object of extensive studies because of their great possibility for applications-permanent magnets, high-density recording media, microwave devices, in biomedicine, to name but a few. Lately, many researchers' efforts have been focused on the existence of the magneto-electric effect in some hexaferrite systems and the appealing possibility of them being used as single-phase multiferroic and magneto-electric materials. As indicated by theoretical analyses, the origin of the large magneto-electric effect can be sought in the strong interaction between the magnetization and the electric polarization that coexist in insulators with noncollinear magnetic structures. The hexaferrites' magnetic structure and, particularly, the specific magnetic spin ordering are the key factors in observing magneto-electric phases in hexaferrites. Some of these phases are metastable, which hampers their direct practical use. However, as the hexaferrites' phase diagrams reveal, chemical doping can be used to prepare a number of noncollinear stable magnetic phases. Since the magneto-electric effect has to do with the magnetic moments ordering, it seems only logical that one should study the cation substitutions' influence on the magnetic phase transition temperature. In this paper, we summarize recent examples of advances in the exploration of magnetic phase transitions in Y-type hexaferrites. In particular, the effect is emphasized by substituting in Y-type hexaferrites the nonmagnetic Me cations with magnetic ones and of the magnetic Fe cations with nonmagnetic ones on their magnetic properties and magnetic phase transitions. The work deals with the structural properties of and the magnetic phase transitions in a specific Y-type hexaferrite, namely, Ba(Sr)MeFeO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9753536 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05689 | DOI Listing |
Soft Matter
January 2025
Department of Physics, Government College of Engineering and Textile Technology, 12 William Carey Road, Serampore, Hooghly-712201, India.
The theoretical study of instabilities, thermal fluctuations, and topological defects in the crystal-rotator-I-rotator-II (X-R-R) phase transitions of -alkanes has been conducted. First, we examine the nature of the R-R phase transition in nanoconfined alkanes. We propose that under confined conditions, the presence of quenched random orientational disorder makes the R phase unstable.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, 100871, China.
Gelatin-based biomaterials have emerged as promising candidates for bioadhesives due to their biodegradability and biocompatibility. However, they often face limitations due to the uncontrollable phase transition of gelatin, which is dominated by hydrogen bonds between peptide chains. Here, we developed controllable phase transition gelatin-based (CPTG) bioadhesives by regulating the dynamic balance of hydrogen bonds between the peptide chains using 2-hydroxyethylurea (HU) and punicalagin (PA).
View Article and Find Full Text PDFFood Res Int
February 2025
Food Science and Nutrition Department, University of Minnesota, 1334 Eckles Ave, Saint Paul, MN, 55108, United States. Electronic address:
There is an ever-increasing demand for novel plant proteins that are non-allergenic, nutritionally complete, adequately functional, and can be sustainably sourced. RuBisCo is a protein that fulfills these requirements and can be sourced from alfalfa (Medicago sativa). Therefore, this study investigated several techniques to adequately extract alfalfa protein.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Conservative Dentistry, School of Dentistry, Dental Research Institute, Dental and Life Science Institute, Pusan National University, Yangsan, Korea.
Background: This study compared the torsional resistance, bending stiffness, and cyclic fatigue resistances of different heat-treated NiTi files for minimally invasive instrumentation.
Methods: TruNatomy (TN) and EndoRoad (ER) file systems were compared with ProTaper Gold (PG). Torsional load, distortion angle, and bending stiffness were assessed using a custom device AEndoS, and toughness was calculated using the torsional data.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!